Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
46 result(s) for "Davide Curcio"
Sort by:
Charge density wave induced nodal lines in LaTe3
LaTe 3 is a non-centrosymmetric material with time reversal symmetry, where the charge density wave is hosted by the Te bilayers. Here, we show that LaTe 3 hosts a Kramers nodal line—a twofold degenerate nodal line connecting time reversal-invariant momenta. We use angle-resolved photoemission spectroscopy, density functional theory with an experimentally reported modulated structure, effective band structures calculated by band unfolding, and symmetry arguments to reveal the Kramers nodal line. Furthermore, calculations confirm that the nodal line imposes gapless crossings between the bilayer-split charge density wave-induced shadow bands and the main bands. In excellent agreement with the calculations, spectroscopic data confirm the presence of the Kramers nodal line and show that the crossings traverse the Fermi level. Furthermore, spinless nodal lines—completely gapped out by spin-orbit coupling—are formed by the linear crossings of the shadow and main bands with a high Fermi velocity. Kramers nodal lines are doubly degenerate nodal lines connecting time-reversal invariant momenta, which are predicted to exist in achiral, non-centrosymmetric crystals with spin-orbit interactions. Here, the authors use ARPES and DFT to demonstrate signatures of Kramers nodal lines in a non-centrosymmetric charge density wave-hosting crystal.
In Situ Exfoliation Method of Large‐Area 2D Materials
2D materials provide a rich platform to study novel physical phenomena arising from quantum confinement of charge carriers. Many of these phenomena are discovered by surface sensitive techniques, such as photoemission spectroscopy, that work in ultra‐high vacuum (UHV). Success in experimental studies of 2D materials, however, inherently relies on producing adsorbate‐free, large‐area, high‐quality samples. The method that yields 2D materials of highest quality is mechanical exfoliation from bulk‐grown samples. However, as this technique is traditionally performed in a dedicated environment, the transfer of samples into vacuum requires surface cleaning that might diminish the quality of the samples. In this article, a simple method for in situ exfoliation directly in UHV is reported, which yields large‐area, single‐layered films. Multiple metallic and semiconducting transition metal dichalcogenides are exfoliated in situ onto Au, Ag, and Ge. The exfoliated flakes are found to be of sub‐millimeter size with excellent crystallinity and purity, as supported by angle‐resolved photoemission spectroscopy, atomic force microscopy, and low‐energy electron diffraction. The approach is well‐suited for air‐sensitive 2D materials, enabling the study of a new suite of electronic properties. In addition, the exfoliation of surface alloys and the possibility of controlling the substrate‐2D material twist angle is demonstrated. 2D materials provide a rich platform to study novel physical phenomena arising from quantum confinement. This article presents a simple and generic method of kinetic in situ single‐layer synthesis, which enables the exfoliation of sub‐millimeter flakes of air‐sensitive 2D materials directly in vacuum. The method does not require the usage of a glovebox or other specialized equipment, making it well‐suited for surface science techniques.
An open-source, end-to-end workflow for multidimensional photoemission spectroscopy
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization. We describe an open-source workflow that allows user interaction with billion-count single-electron events in photoemission band mapping experiments, compatible with beamlines at 3rd and 4rd generation light sources and table-top laser-based setups. The workflow offers an end-to-end recipe from distributed operations on single-event data to structured formats for downstream scientific tasks and storage to materials science database integration. Both the workflow and processed data can be archived for reuse, providing the infrastructure for documenting the provenance and lineage of photoemission data for future high-throughput experiments.
In Operando Angle‐Resolved Photoemission Spectroscopy with Nanoscale Spatial Resolution: Spatial Mapping of the Electronic Structure of Twisted Bilayer Graphene
To pinpoint the electronic and structural mechanisms that affect intrinsic and extrinsic performance limits of 2D material devices, it is of critical importance to resolve the electronic properties on the mesoscopic length scale of such devices under operating conditions. Herein, angle‐resolved photoemission spectroscopy with nanoscale spatial resolution (nanoARPES) is used to map the quasiparticle electronic structure of a twisted bilayer graphene device. The dispersion and linewidth of the Dirac cones associated with top and bottom graphene layers are determined as a function of spatial position on the device under both static and operating conditions. The analysis reveals that microscopic rotational domains in the two graphene layers establish a range of twist angles from 9.8° to 12.7°. Application of current and electrostatic gating lead to strong electric fields with peak strengths of 0.75 V/μm at the rotational domain boundaries in the device. These proof‐of‐principle results demonstrate the potential of nanoARPES to link mesoscale structural variations with electronic states in operating device conditions and to disentangle such extrinsic factors from the intrinsic quasiparticle dispersion. Nanoscale angle‐resolved photoemission spectroscopy is applied to map the electronic structure of a twisted bilayer graphene device during the application of current and an electrostatic gate voltage. Rotational domains are found to strongly affect the measured linewidth of the top and bottom Dirac cones and lead to a spatially inhomogeneous electric field during operation of the device.
Charge density wave induced nodal lines in LaTe 3
LaTe is a non-centrosymmetric material with time reversal symmetry, where the charge density wave is hosted by the Te bilayers. Here, we show that LaTe hosts a Kramers nodal line-a twofold degenerate nodal line connecting time reversal-invariant momenta. We use angle-resolved photoemission spectroscopy, density functional theory with an experimentally reported modulated structure, effective band structures calculated by band unfolding, and symmetry arguments to reveal the Kramers nodal line. Furthermore, calculations confirm that the nodal line imposes gapless crossings between the bilayer-split charge density wave-induced shadow bands and the main bands. In excellent agreement with the calculations, spectroscopic data confirm the presence of the Kramers nodal line and show that the crossings traverse the Fermi level. Furthermore, spinless nodal lines-completely gapped out by spin-orbit coupling-are formed by the linear crossings of the shadow and main bands with a high Fermi velocity.
Autonomous microARPES
Angle-resolved photoemission spectroscopy (ARPES) is a technique used to map the occupied electronic structure of solids. Recent progress in X-ray focusing optics has led to the development of ARPES into a microscopic tool, permitting the electronic structure to be spatially mapped across the surface of a sample. This comes at the expense of a time-consuming scanning process to cover not only a three-dimensional energy-momentum (\\(E, k_z, k_y\\)) space but also the two-dimensional surface area. Here, we implement a protocol to autonomously search both \\(\\mathbf{k}\\)- and real space in order to find positions of particular interest, either because of their high photoemission intensity or because of sharp spectral features. The search is based on the use of Gaussian process regression and can easily be expanded to include additional parameters or optimisation criteria. This autonomous experimental control is implemented on the SGM4 micro-focus beamline of the synchrotron radiation source ASTRID2.
Mixed-valence state in the dilute-impurity regime of La-substituted SmB\\(_6\\)
Homogeneous mixed-valence (MV) behaviour is one of the most intriguing phenomena of \\(f\\)-electron systems. Despite extensive efforts, a fundamental aspect which remains unsettled is the determination of the limiting cases for which MV emerges. Here we address this question for SmB\\(_6\\), a prototypical MV system characterized by two nearly-degenerate Sm\\(^{2+}\\) and Sm\\(^{3+}\\) configurations. By combining angle resolved photoemission spectroscopy (ARPES) and x-ray absorption spectroscopy (XAS), we track the evolution of the mean Sm valence, \\(v_{Sm}\\), in the Sm\\(_x\\)La\\(_{1-x}\\)B\\(_6\\) series. Upon substitution of Sm ions with trivalent La, we observe a linear decrease of valence fluctuations to an almost complete suppression at $x$$\\,\\(=\\)\\,\\(0.2, with \\)v_{Sm}$$\\,$$\\sim$$\\,\\(2; surprisingly, by further reducing \\)x\\(, a re-entrant increase of \\)v_{Sm}\\( develops, approaching the value of \\)v_{imp}$$\\,$$\\sim$$\\,\\(2.35 in the dilute-impurity limit. Such observation departs from a monotonic evolution of \\)v_{Sm}\\( across the whole series, as well as from the expectation of its convergence to an integer value for \\)x$$\\,$$\\rightarrow$$\\,\\(0. Our ARPES and XAS results, complemented by a phenomenological model, demonstrate an unconventional evolution of the MV character in the Sm\\)_x\\(La\\)_{1-x}\\(B\\)_6$ series, paving the way to further theoretical and experimental considerations on the concept of MV itself, and its influence on the macroscopic properties of rare-earth compounds in the dilute-to-intermediate impurity regime.
In-situ exfoliation method of large-area 2D materials
The success in studying 2D materials inherently relies on producing samples of large area, and high quality enough for the experimental conditions. Because their 2D nature surface sensitive techniques such as photoemission spectroscopy , tunneling microscopy and electron diffraction, that work in ultra high vacuum (UHV) environment are prime techniques that have been employed with great success in unveiling new properties of 2D materials but it requires samples to be free of adsorbates. The technique that most easily and readily yields 2dmaterials of highest quality is indubitably mechanical exfoliation from bulk grown samples, however as this technique is traditionally done in dedicated environment, the transfer of these samples into UHV setups requires some form of surface cleaning that tempers with the sample quality. In this article, we report on a simple and general method of \\textit{in-situ} mechanical exfoliation directly in UHV that yields large-area single-layered films. By employing standard UHV cleaning techniques and by purpusedly exploiting the chemical affinity between the substrate and the sample we could yield large area exfoliation of transition metal dichalcogenides. Multiple transition metal dichalcogenides, both metallic and semiconducting, are exfoliated \\textit{in-situ} onto Au and Ag, and Ge. Exfoliated flakes are found to be sub-milimeter size with excellent crystallinity and purity, as evidenced by angle-resolved photoemission spectroscopy, atomic force microscopy and low-energy electron diffraction. In addition, we demonstrate exfoliation of air-sensitive 2D materials and possibility of controlling the substrate-2D material twist angle.
Tracking the surface atomic motion in a coherent phonon oscillation
X-ray photoelectron diffraction is a powerful tool for determining the structure of clean and adsorbate-covered surfaces. Extending the technique into the ultrafast time domain will open the door to studies as diverse as the direct determination of the electron-phonon coupling strength in solids and the mapping of atomic motion in surface chemical reactions. Here we demonstrate time-resolved photoelectron diffraction using ultrashort soft X-ray pulses from the free electron laser FLASH. We collect Se 3d photoelectron diffraction patterns over a wide angular range from optically excited Bi\\(_2\\)Se\\(_3\\) with a time resolution of 140 fs. Combining these with multiple scattering simulations allows us to track the motion of near-surface atoms within the first 3 ps after triggering a coherent vibration of the A\\(_{1g}\\) optical phonons. Using a fluence of 4.2 mJ/cm\\(^2\\) from a 1.55 eV pump laser, we find the resulting coherent vibrational amplitude in the first two interlayer spacings to be on the order of 1 pm.