Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,567 result(s) for "Davis, Amy"
Sort by:
Mechanistic models project bird invasions with accuracy
Invasive species pose a major threat to biodiversity and inflict massive economic costs. Effective management of bio-invasions depends on reliable predictions of areas at risk of invasion, as they allow early invader detection and rapid responses. Yet, considerable uncertainty remains as to how to predict best potential invasive distribution ranges. Using a set of mainly (sub)tropical birds introduced to Europe, we show that the true extent of the geographical area at risk of invasion can accurately be determined by using ecophysiological mechanistic models that quantify species’ fundamental thermal niches. Potential invasive ranges are primarily constrained by functional traits related to body allometry and body temperature, metabolic rates, and feather insulation. Given their capacity to identify tolerable climates outside of contemporary realized species niches, mechanistic predictions are well suited for informing effective policy and management aimed at preventing the escalating impacts of invasive species. Forecasts of risks of invasion by non-native species are challenging to obtain. Here, the authors show that mechanistic models based on functional traits related to species’ capacity to generate and retain body heat identify areas at risk of invasion by non-native birds in Europe.
Many plants naturalized as aliens abroad have also become more common within their native regions
Due to anthropogenic pressure some species have declined whereas others have increased within their native ranges. Simultaneously, many species introduced by humans have established self-sustaining populations elsewhere (i.e. have become naturalized aliens). Previous studies have shown that particularly plant species that are common within their native range have become naturalized elsewhere. However, how changes in native distributions correlate with naturalization elsewhere is unknown. We compare data on grid-cell occupancy of native vascular plant species over time for 10 European regions (countries or parts thereof). For nine regions, both early occupancy and occupancy change correlate positively with global naturalization success (quantified as naturalization in any administrative region and as the number of such regions). In other words, many plant species spreading globally as naturalized aliens are also expanding within their native regions. This implies that integrating data on native occupancy dynamics in invasion risk assessments might help prevent new invasions. How changes in species’ native occupancy over time relate to global naturalization success remains unclear. Here, the authors show that species with both high occupancy decades ago and increasing native occupancy ever since are more likely to become naturalized elsewhere.
Ecological similarities and dissimilarities between donor and recipient regions shape global plant naturalizations
A central question in ecology is why alien species naturalize successfully in some regions but not in others. While some hypotheses suggest aliens are more likely to naturalize in environments similar to donor regions, others suggest they thrive in regions where certain characteristics are different. Using the native (i.e., donor) and recipient distributions of 11,604 naturalized alien plant species across 650 regions globally, we assess whether plants are more likely to naturalize in regions that are ecologically similar or dissimilar to their donor regions. Our results show that species are more likely to naturalize in recipient regions where climates are similar and native floras are phylogenetically similar to those of their donor regions, indicating that pre-adaptation to familiar biotic and abiotic conditions facilitates naturalization. However, naturalization is also more likely in regions with lower native flora diversity and more intense human modification than in the species’ native range. Among all predictors, climate similarity and difference in native flora diversity emerge as the strongest predictors of naturalization success. In conclusion, ecological similarity in some factors but dissimilarity in others between donor and recipient regions promote the naturalization of alien plants and contribute to their uneven global distribution patterns. Across a global dataset of over 11,000 naturalized alien plant species, the authors find that species are likely to naturalize both in regions with climates and floras similar to those in their native ranges, and in regions with a lower diversity or stronger human impact than in their native range.
Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States
Establishment of nonnative fishes and extirpations of native fishes have homogenized freshwater fish faunas, yet our understanding of the drivers of this process remain limited. We addressed this knowledge gap by testing three hypotheses about introductions and homogenization of fish communities is the eastern United States: First, whether nonnative fish introductions have caused fish faunas to become homogenized or differentiated; second, whether patterns of faunal change are related to native species richness, propagule pressure, and anthropogenic disturbance; third, whether invasion patterns are attributable to either biotic resistance or preadaptation. We compared taxonomic similarity among watersheds in historical and contemporary time steps, and modeled contributions of different drivers to faunal change within watersheds. Average similarity among watersheds nearly doubled in contemporary times, pointing to substantial fish faunal homogenization. No watersheds lost species; patterns of homogenization are attributable entirely to nonnative species invasion. Community change and nonnative richness were positively associated with agriculture-urban land use, recreational fishing demand, and elevation. Native richness negatively affected community change and nonnative richness. Nonnative species originated from watersheds with higher richness than the ones they invaded, suggesting a role for biotic resistance. Understanding how mechanisms operate across spatial scales will help guide future conservation efforts.
Diagnosis and Management of Vertebral Compression Fractures
Vertebral compression fractures (VCFs) are the most common complication of osteoporosis, affecting more than 700,000 Americans annually. Fracture risk increases with age, with four in 10 white women older than 50 years experiencing a hip, spine, or vertebral fracture in their lifetime. VCFs can lead to chronic pain, disfigurement, height loss, impaired activities of daily living, increased risk of pressure sores, pneumonia, and psychological distress. Patients with an acute VCF may report abrupt onset of back pain with position changes, coughing, sneezing, or lifting. Physical examination findings are often normal, but can demonstrate kyphosis and midline spine tenderness. More than two-thirds of patients are asymptomatic and diagnosed incidentally on plain radiography. Acute VCFs may be treated with analgesics such as acetaminophen, nonsteroidal anti-inflammatory drugs, narcotics, and calcitonin. Physicians must be mindful of medication adverse effects in older patients. Other conservative therapeutic options include limited bed rest, bracing, physical therapy, nerve root blocks, and epidural injections. Percutaneous vertebral augmentation, including vertebroplasty and kyphoplasty, is controversial, but can be considered in patients with inadequate pain relief with nonsurgical care or when persistent pain substantially affects quality of life. Family physicians can help prevent vertebral fractures through management of risk factors and the treatment of osteoporosis.
Landscape-scale analysis of raccoon rabies surveillance reveals different drivers of disease dynamics across latitude
When raccoon rabies first invaded the mid-Atlantic United States, epizootics were larger, longer, and more pronounced than those in its historic, more southern, range, suggesting a North-South gradient in disease dynamics. In addition, due to higher raccoon densities and concentrated feeding sources, urban areas might sustain larger epizootics, suggesting an urban-rural gradient might likewise influence dynamics. Here we leverage long-term surveillance data on raccoon rabies, collated by the Centers for Disease Control and Prevention, United States Department of Agriculture, and state and local public health agencies to better understand the role of latitude and urbanness for raccoon rabies epizootiology. Our analysis utilizes surveillance data from the 20 states composing the raccoon rabies enzootic area across 2006–2018. We identified effects of latitude and human population density (a proxy for urbanness) on the county-level probability of detecting raccoon rabies. We find that: 1) in the northeastern US, more samples are submitted in the summer, and more positive results are obtained, albeit with a lower likelihood of a given sample being found to be rabid, while these trends are independent of season at southern latitudes; 2) the association between urbanness and risk of rabies cases varies across latitude, with greater rabies presence in rural vs. urban counties in the south and a more consistent risk across urbanness in the north; and 3) the most consistent predictors of raccoon rabies detection are spatiotemporal effects, suggesting that recent detection of cases in a county or its neighbors are more informative of raccoon rabies dynamics than are general metrics like latitude and urbanness. Statistical and spatial long-term studies like these not only can improve understanding of wildlife disease patterns but can help guide public health and wildlife management efforts in areas most at risk for raccoon rabies virus infection.
Industrial Hemp (Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals
Industrial hemp (Cannabis sativa L., Cannabaceae) is an ancient cultivated plant originating from Central Asia and historically has been a multi-use crop valued for its fiber, food, and medicinal uses. Various oriental and Asian cultures kept records of its production and numerous uses. Due to the similarities between industrial hemp (fiber and grain) and the narcotic/medical type of Cannabis, the production of industrial hemp was prohibited in most countries, wiping out centuries of learning and genetic resources. In the past two decades, most countries have legalized industrial hemp production, prompting a significant amount of research on the health benefits of hemp and hemp products. Current research is yet to verify the various health claims of the numerous commercially available hemp products. Hence, this review aims to compile recent advances in the science of industrial hemp, with respect to its use as value-added functional food ingredients/nutraceuticals and health benefits, while also highlighting gaps in our current knowledge and avenues of future research on this high-value multi-use plant for the global food chain.
Writing statistical methods for ecologists
The Methods section is a key component of any ecology research publication containing detailed information on how the data were collected and analyzed. However, descriptions of which statistical methods were used and how they were applied can substantially vary and may not provide enough information for the analyses to be reproducible. Computational and statistical programming advances have allowed ecological researchers without a strong statistical or mathematical background to access and use increasingly complex statistical methods. Thus, statistical methods are written by and need to be accessible to researchers across a range of quantitative expertise. Poorly written Methods sections can incorrectly inflate the strength of or call into question the results of an analysis. Although there are resources available, we have not found one that is specific to writing statistical methods, includes all the elements we discuss, and is targeted for ecologists. Here we provide guidelines for ecological researchers when writing statistical methods and review frequent errors made in Statistical Methods sections. We highlight some common dos and don'ts when writing Statistical Methods sections and present a simple checklist to help guide authors with their writing to ensure reproducibility. We illustrate the use of this guidance with two examples.