Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
390
result(s) for
"Davis, Erica"
Sort by:
Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae
2021
Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.
Existing methods of zebrafish phenotyping rely on contact-based processes. Here the authors report on an acoustofluidic-based platform which performs contactless specimen rotation, that results in multispectral images for rapid morphological phenotyping of zebrafish larvae.
Journal Article
In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress
by
Telen, Marilyn J.
,
Anderson, Blair R.
,
Garrett, Melanie E.
in
African Americans
,
Animals
,
Apolipoprotein L1
2015
African Americans have a disproportionate risk for developing nephropathy. This disparity has been attributed to coding variants (G1 and G2) in apolipoprotein L1 (APOL1); however, there is little functional evidence supporting the role of this protein in renal function. Here, we combined genetics and in vivo modeling to examine the role of apol1 in glomerular development and pronephric filtration and to test the pathogenic potential of APOL1 G1 and G2. Translational suppression or CRISPR/Cas9 genome editing of apol1 in zebrafish embryos results in podocyte loss and glomerular filtration defects. Complementation of apol1 morphants with wild-type human APOL1 mRNA rescues these defects. However, the APOL1 G1 risk allele does not ameliorate defects caused by apol1 suppression and the pathogenicity is conferred by the cis effect of both individual variants of the G1 risk haplotype (I384M/S342G). In vivo complementation studies of the G2 risk allele also indicate that the variant is deleterious to protein function. Moreover, APOL1 G2, but not G1, expression alone promotes developmental kidney defects, suggesting a possible dominant-negative effect of the altered protein. In sickle cell disease (SCD) patients, we reported previously a genetic interaction between APOL1 and MYH9. Testing this interaction in vivo by co-suppressing both transcripts yielded no additive effects. However, upon genetic or chemical induction of anemia, we observed a significantly exacerbated nephropathy phenotype. Furthermore, concordant with the genetic interaction observed in SCD patients, APOL1 G2 reduces myh9 expression in vivo, suggesting a possible interaction between the altered APOL1 and myh9. Our data indicate a critical role for APOL1 in renal function that is compromised by nephropathy-risk encoding variants. Moreover, our interaction studies indicate that the MYH9 locus is also relevant to the phenotype in a stressed microenvironment and suggest that consideration of the context-dependent functions of both proteins will be required to develop therapeutic paradigms.
Journal Article
Testing for rare genetic causes of obesity: findings and experiences from a pediatric weight management program
2022
BackgroundGenetic screening for youth with obesity in the absence of syndromic findings has not been part of obesity management. For children with early onset obesity, genetic screening is recommended for those having clinical features of genetic obesity syndromes (including hyperphagia).ObjectivesThe overarching goal of this work is to report the findings and experiences from one pediatric weight management program that implemented targeted sequencing analysis for genes known to cause rare genetic disorders of obesity.Subjects/MethodsThis exploratory study evaluated youth tested over an 18-month period using a panel of 40-genes in the melanocortin 4 receptor pathway. Medical records were reviewed for demographic and visit information, including body mass index (BMI) percent of 95th percentile (%BMIp95) and two eating behaviors.ResultsOf 117 subjects: 51.3% were male; 53.8% Hispanic; mean age 10.2 years (SD 3.8); mean %BMIp95 157% (SD 29%). Most subjects were self- or caregiver-reported to have overeating to excess or binge eating (80.3%) and sneaking food or eating in secret (59.0%). Among analyzed genes, 72 subjects (61.5%) had at least one variant reported; 50 (42.7%) had a single variant reported; 22 (18.8%) had 2–4 variants reported; most variants were rare (<0.05% minor allele frequency [MAF]), and of uncertain significance; all variants were heterozygous. Nine subjects (7.7%) had a variant reported as PSCK1 “risk” or MC4R “likely pathogenic”; 39 (33.3%) had a Bardet-Biedl Syndrome (BBS) gene variant (4 with “pathogenic” or “likely pathogenic” variants). Therefore, 9 youth (7.7%) had gene variants previously identified as increasing risk for obesity and 4 youth (3.4%) had BBS carrier status.ConclusionsPanel testing identified rare variants of uncertain significance in most youth tested, and infrequently identified variants previously reported to increase the risk for obesity. Further research in larger cohorts is needed to understand how genetic variants influence the expression of non-syndromic obesity.
Journal Article
Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice
by
Rossmeisl, John H.
,
Singh, Ravi N.
,
Arena, Christopher B.
in
Ablation
,
Animal models
,
Animals
2013
Irreversible electroporation (IRE) is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC) BALB/c versus immunodeficient (ID) nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region.
Journal Article
A Novel Ribosomopathy Caused by Dysfunction of RPL10 Disrupts Neurodevelopment and Causes X-Linked Microcephaly in Humans
2014
Neurodevelopmental defects in humans represent a clinically heterogeneous group of disorders. Here, we report the genetic and functional dissection of a multigenerational pedigree with an X-linked syndromic disorder hallmarked by microcephaly, growth retardation, and seizures. Using an X-linked intellectual disability (XLID) next-generation sequencing diagnostic panel, we identified a novel missense mutation in the gene encoding 60S ribosomal protein L10 (RPL10), a locus associated previously with autism spectrum disorders (ASD); the p.K78E change segregated with disease under an X-linked recessive paradigm while, consistent with causality, carrier females exhibited skewed X inactivation. To examine the functional consequences of the p.K78E change, we modeled RPL10 dysfunction in zebrafish. We show that endogenous rpl10 expression is augmented in anterior structures, and that suppression decreases head size in developing morphant embryos, concomitant with reduced bulk translation and increased apoptosis in the brain. Subsequently, using in vivo complementation, we demonstrate that p.K78E is a loss-of-function variant. Together, our findings suggest that a mutation within the conserved N-terminal end of RPL10, a protein in close proximity to the peptidyl transferase active site of the 60S ribosomal subunit, causes severe defects in brain formation and function.
Journal Article
Identification of cis-suppression of human disease mutations by comparative genomics
2015
Patterns of amino acid conservation have been used to guide the interpretation of the disease-causing potential of genetic variants in patients; now, an appreciable fraction of pathogenic alleles are shown to be fixed in the genomes of other species, suggesting that the genomic context has an important role in allele pathogenicity.
Vulnerability to disease in the genes
Patterns of amino acid conservation have been used to guide the interpretation of the pathogenic potential of variants in patients. Nicholas Katsanis and colleagues now show that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for
cis
-genomic context. Their model suggests most of these to be simple pairwise compensations. Using two known human disease genes as an example, they show that discrete
cis
amino acid residues, although benign on their own, could rescue the human mutations
in vivo
. They go on to develop a computational tool to predict candidate residues subject to compensation. This work suggests that the
cis
-genomic context is important when considering the complexity of allele effect on phenotype and when predicting allele pathogenicity.
Patterns of amino acid conservation have served as a tool for understanding protein evolution
1
. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients
2
. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes
3
,
4
revealed discrete
cis
amino acid residues that, although benign on their own, could rescue the human mutations
in vivo
. This approach was also applied to
ab initio
gene discovery to support the identification of a
de novo
disease driver in
BTG2
that is subject to protective
cis
-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of
cis
-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity
5
,
6
.
Journal Article
Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy
2015
The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous +Mat/CLPGPat animals receiving the CLPG mutation from their father express the phenotype. +Mat/CLPGPat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep.
Journal Article
A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis
by
Russell, Chad
,
Goerz, Conrad
,
Simard, Louise
in
Abnormalities, Multiple - genetics
,
Abscission
,
Animals
2017
BackgroundHydranencephaly is a congenital anomaly leading to replacement of the cerebral hemispheres with a fluid-filled cyst. The goals of this work are to describe a novel autosomal-recessive syndrome that includes hydranencephaly (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly (MARCH)); to identify its genetic cause(s) and to provide functional insight into pathomechanism.MethodsWe used homozygosity mapping and exome sequencing to identify recessive mutations in a single family with three affected fetuses. Immunohistochemistry, RT-PCR and imaging in cell lines, and zebrafish models, were used to explore the function of the gene and the effect of the mutation.ResultsWe identified a homozygous nonsense mutation in CEP55 segregating with MARCH. Testing the effect of this allele on patient-derived cells indicated both a reduction of the overall CEP55 message and the production of a message that likely gives rise to a truncated protein. Suppression or ablation of cep55l in zebrafish embryos recapitulated key features of MARCH, most notably renal dysplasia, cerebellar hypoplasia and craniofacial abnormalities. These phenotypes could be rescued by full-length but not truncated human CEP55 message. Finally, we expressed the truncated form of CEP55 in human cells, where we observed a failure of truncated protein to localise to the midbody, leading to abscission failure and multinucleated daughter cells.Conclusions CEP55 loss of function mutations likely underlie MARCH, a novel multiple congenital anomaly syndrome. This association expands the involvement of centrosomal proteins in human genetic disorders by highlighting a role in midbody function.
Journal Article