Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
232
result(s) for
"Davis, Patrick K."
Sort by:
Platelet Dysfunction is an Early Marker for Traumatic Brain Injury-Induced Coagulopathy
by
Moore, Ernest E.
,
Davis, Patrick K.
,
Losiniecki, Andrew
in
Adult
,
Anticoagulants
,
Biomarkers - blood
2013
Background
The goal of this study is to determine the presence of platelet dysfunction in patients with traumatic brain injury (TBI). The mechanisms underlying the coagulopathy associated with TBI remain elusive. The question of platelet dysfunction in TBI is unclear.
Methods
This was a prospective observational study conducted at Memorial Hospital of South Bend, IN, and Denver Health Medical Center, CO. A total of 50 patients sustaining TBI, and not under treatment with anticoagulants or platelet inhibitors, were analyzed utilizing modified thromboelastography (TEG) with platelet mapping (TEG/PM), along with standard coagulation tests.
Results
Compared to normal controls, patients with severe TBI had a significantly increased percentage of platelet ADP and arachidonic acid (AA) receptor inhibition. Furthermore, the percentage of ADP inhibition distinguished between survivors and non-survivors in patients with TBI (Mann–Whitney test,
P
= 0.035). ADP inhibition correlates strongly with severity of TBI (Mann–Whitney test,
P
= 0.014), while AA inhibition did not.
Conclusion
These data indicate that early platelet dysfunction is prevalent after severe TBI, can be measured in a point-of-care setting using TEG/PM, and correlates with mortality. The mechanism responsible for this platelet dysfunction and associated implications for TBI management remains to be defined.
Journal Article
Abnormal Whole Blood Thrombi in Humans with Inherited Platelet Receptor Defects
by
Davis, Patrick K.
,
Liang, Zhong
,
Donahue, Deborah L.
in
Adenosine diphosphate
,
Adenosine Diphosphate - pharmacology
,
Adenosine Diphosphate - physiology
2012
To delineate the critical features of platelets required for formation and stability of thrombi, thromboelastography and platelet aggregation measurements were employed on whole blood of normal patients and of those with Bernard-Soulier Syndrome (BSS) and Glanzmann's Thrombasthenia (GT). We found that separation of platelet activation, as assessed by platelet aggregation, from that needed to form viscoelastic stable whole blood thrombi, occurred. In normal human blood, ristocetin and collagen aggregated platelets, but did not induce strong viscoelastic thrombi. However, ADP, arachidonic acid, thrombin, and protease-activated-receptor-1 and -4 agonists, stimulated both processes. During this study, we identified the genetic basis of a very rare double heterozygous GP1b deficiency in a BSS patient, along with a new homozygous GP1b inactivating mutation in another BSS patient. In BSS whole blood, ADP responsiveness, as measured by thrombus strength, was diminished, while ADP-induced platelet aggregation was normal. Further, the platelets of 3 additional GT patients showed very weak whole blood platelet aggregation toward the above agonists and provided whole blood thrombi of very low viscoelastic strength. These results indicate that measurements of platelet counts and platelet aggregability do not necessarily correlate with generation of stable thrombi, a potentially significant feature in patient clinical outcomes.
Journal Article
Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review
by
Marsee, Mathew K.
,
Wiarda, Grant
,
Brenner, Toby J.
in
Anticoagulants
,
Blood platelets
,
Blood products
2022
In the field of otolaryngology—head and neck surgery (ENT), coagulopathies present unique diagnostic and therapeutic challenges. In both hyper- and hypocoagulable patients, management of coagulopathies requires intricate attention to the nature of hemostatic competence. Common coagulation tests (CCTs) offer only a snapshot of hemostatic competence and do not provide a clear insight into the patient’s real-time hemostatic condition. Viscoelastic tests (VETs) offer a holistic and concurrent picture of the coagulation process. Although VETs have found prominent utilization in hepatic transplants, obstetrics, and emergent surgical settings, they have not been fully adopted in the realm of otolaryngology. The objective of this manuscript is to provide an overview of the literature evaluating the current utilization and possible future uses of VETs in the field of otolaryngology. The authors performed a comprehensive literature search of the utilization of VETs in otolaryngology and identified applicable studies that included descriptions of viscoelastic testing. Twenty-five studies were identified in this search, spanning topics from head and neck oncology, microvascular free flap reconstruction, obstructive sleep apnea, adenotonsillectomy, facial trauma, and epistaxis. The applicability of VETs has been demonstrated in head and neck oncology and microvascular free flap management, although their pervasiveness in practice is limited. Underutilization of VETs in the field of otolaryngology may be due to a lack of familiarity of the tests amongst practitioners. Instead, most otolaryngologists continue to rely on CCTs, including PT, PTT, INR, CBC, fibrinogen levels, and thrombin time. Learning to perform, interpret, and skillfully employ VETs in clinical and operative practice can greatly improve the management of coagulopathic patients who are at increased risk of bleeding or thrombosis.
Journal Article
Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor
2022
Organic photovoltaics (OPVs) promise cheap and flexible solar energy. Whereas light generates free charges in silicon photovoltaics, excitons are normally formed in organic semiconductors due to their low dielectric constants, and require molecular heterojunctions to split into charges. Recent record efficiency OPVs utilise the small molecule, Y6, and its analogues, which – unlike previous organic semiconductors – have low band-gaps and high dielectric constants. We show that, in Y6 films, these factors lead to intrinsic free charge generation without a heterojunction. Intensity-dependent spectroscopy reveals that 60–90% of excitons form free charges at AM1.5 light intensity. Bimolecular recombination, and hole traps constrain single component Y6 photovoltaics to low efficiencies, but recombination is reduced by small quantities of donor. Quantum-chemical calculations reveal strong coupling between exciton and CT states, and an intermolecular polarisation pattern that drives exciton dissociation. Our results challenge how current OPVs operate, and renew the possibility of efficient single-component OPVs.
When light hits organic semiconductors, bound charge pairs, called excitons, are usually produced. Here, the authors show that in the best performing organic solar material to date, free charges, rather than excitons, are directly created by light.
Journal Article
Treadmill belt accelerations may not accurately replicate kinematic responses to tripping on an obstacle in older people
by
Song, Patrick Y. H.
,
Sturnieks, Daina L.
,
Davis, Michael K.
in
Acceleration
,
Acceleration (Mechanics)
,
Accidental Falls - prevention & control
2025
Treadmill belt perturbations have high clinical feasibility for use in perturbation-based training in older people, but their kinematic validity is unclear. This study examined the kinematic validity of treadmill belt accelerations as a surrogate for overground walkway trips during gait in older people.
Thirty-eight community-dwelling older people were exposed to two unilateral belt accelerations (8 m s-2) whilst walking on a split-belt treadmill and two trips induced by a 14 cm trip-board whilst walking on a walkway with condition presentation randomised. Anteroposterior margin of stability (MoS), number of falls, and trunk and lower limb kinematics were quantified for the step prior and five recovery steps following the treadmill perturbations and the walkway trips which elicited elevating and lowering strategies.
Rates of falls following the treadmill accelerations and walkway trips were 0% and 13.1%, respectively. MoS was similar during the first recovery step (P>0.05) but less negative during subsequent recovery steps following treadmill belt accelerations than walkway trips (P<0.01) regardless of recovery strategy. Excluding the first recovery step in the lowering strategy, recovery step lengths, toe clearance, maximum trunk, hip and knee angles (P<0.05) were smaller during recovery on the treadmill compared to the walkway.
Destabilisation by treadmill belt accelerations quickly dissipated after only one recovery step but continued for multiple recovery steps following walkway trips. Smaller trunk displacement, step lengths, toe clearance and no falls on the treadmill indicate treadmill belt accelerations may not accurately simulate the biomechanical challenge of obstacle-induced trips in older people.
Journal Article
Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder
2021
Psilocybin has shown promise for the treatment of mood disorders, which are often accompanied by cognitive dysfunction including cognitive rigidity. Recent studies have proposed neuropsychoplastogenic effects as mechanisms underlying the enduring therapeutic effects of psilocybin. In an open-label study of 24 patients with major depressive disorder, we tested the enduring effects of psilocybin therapy on cognitive flexibility (perseverative errors on a set-shifting task), neural flexibility (dynamics of functional connectivity or dFC via functional magnetic resonance imaging), and neurometabolite concentrations (via magnetic resonance spectroscopy) in brain regions supporting cognitive flexibility and implicated in acute psilocybin effects (e.g., the anterior cingulate cortex, or ACC). Psilocybin therapy increased cognitive flexibility for at least 4 weeks post-treatment, though these improvements were not correlated with the previously reported antidepressant effects. One week after psilocybin therapy, glutamate and N-acetylaspartate concentrations were decreased in the ACC, and dFC was increased between the ACC and the posterior cingulate cortex (PCC). Surprisingly, greater increases in dFC between the ACC and PCC were associated with less improvement in cognitive flexibility after psilocybin therapy. Connectome-based predictive modeling demonstrated that baseline dFC emanating from the ACC predicted improvements in cognitive flexibility. In these models, greater baseline dFC was associated with better baseline cognitive flexibility but less improvement in cognitive flexibility. These findings suggest a nuanced relationship between cognitive and neural flexibility. Whereas some enduring increases in neural dynamics may allow for shifting out of a maladaptively rigid state, larger persisting increases in neural dynamics may be of less benefit to psilocybin therapy.
Journal Article
Comprehensive analysis of kinase inhibitor selectivity
2011
Davis
et al
. extend their previous efforts to use inhibitor-kinase interactions to understand kinase inhibitor selectivity by profiling the binding of 72 kinase inhibitors to 442 human kinase catalytic domains. The data reveal group-specific differences in selectivity and suggest the feasibility of developing reasonably specific inhibitors for most kinases.
We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Journal Article
Just 2% of SARS-CoV-2—positive individuals carry 90% of the virus circulating in communities
by
McQueen, Matthew B.
,
Dowell, Robin D.
,
Barbachano-Guerrero, Arturo
in
Asymptomatic Infections - epidemiology
,
Biological Sciences
,
Carrier State - diagnosis
2021
We analyze data from the fall 2020 pandemic response efforts at the University of Colorado Boulder, where more than 72,500 saliva samples were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using qRT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously observed in symptomatic individuals. Regardless of symptomatic status, ∼50% of individuals who test positive for SARS-CoV-2 seem to be in noninfectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral “supercarriers” and possibly also superspreaders.
Journal Article
Climate warming increases extreme daily wildfire growth risk in California
by
Hanley, Holt
,
Kochanski, Adam K.
,
Clements, Craig B.
in
704/106/694/2786
,
704/106/694/674
,
Anthropogenic factors
2023
California has experienced enhanced extreme wildfire behaviour in recent years
1
–
3
, leading to substantial loss of life and property
4
,
5
. Some portion of the change in wildfire behaviour is attributable to anthropogenic climate warming, but formally quantifying this contribution is difficult because of numerous confounding factors
6
,
7
and because wildfires are below the grid scale of global climate models. Here we use machine learning to quantify empirical relationships between temperature (as well as the influence of temperature on aridity) and the risk of extreme daily wildfire growth (>10,000 acres) in California and find that the influence of temperature on the risk is primarily mediated through its influence on fuel moisture. We use the uncovered relationships to estimate the changes in extreme daily wildfire growth risk under anthropogenic warming by subjecting historical fires from 2003 to 2020 to differing background climatological temperatures and aridity conditions. We find that the influence of anthropogenic warming on the risk of extreme daily wildfire growth varies appreciably on a fire-by-fire and day-by-day basis, depending on whether or not climate warming pushes conditions over certain thresholds of aridity, such as 1.5 kPa of vapour-pressure deficit and 10% dead fuel moisture. So far, anthropogenic warming has enhanced the aggregate expected frequency of extreme daily wildfire growth by 25% (5–95 range of 14–36%), on average, relative to preindustrial conditions. But for some fires, there was approximately no change, and for other fires, the enhancement has been as much as 461%. When historical fires are subjected to a range of projected end-of-century conditions, the aggregate expected frequency of extreme daily wildfire growth events increases by 59% (5–95 range of 47–71%) under a low SSP1–2.6 emissions scenario compared with an increase of 172% (5–95 range of 156–188%) under a very high SSP5–8.5 emissions scenario, relative to preindustrial conditions.
Quantification of climate warming in California using machine learning shows increased daily wildfire growth risk by 25%, with an expected increase of 59% and 172% in 2100, for low- and very-high-emissions scenarios, respectively.
Journal Article
A quantitative analysis of kinase inhibitor selectivity
by
Patel, Hitesh K
,
Campbell, Brian T
,
Morrison, Michael J
in
Agriculture
,
Amino acids
,
Binding Sites
2008
Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets
1
,
2
. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome
2
,
3
,
4
. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Journal Article