Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Davison, Jenna M."
Sort by:
Medical student non-modifiable risk factors and USMLE Step 1 exam score
by
Bumsted, Tracy N.
,
Taylor, Margot B.
,
Davison, Jenna M.
in
adverse childhood experience score
,
Adverse childhood experiences
,
Applicants
2024
For diversity to exist in the medical graduate workforce, students from all backgrounds should have equitable opportunities of employment. Specialties have utilized a minimal threshold for USMLE Step 1 score when screening applicants for residency interviews. The OHSU SOM class of 2021 completed a 14-question voluntary survey on their Step 1 score and the following non-modifiable risk factors: Adverse Childhood Experience score (ACEs), sex, gender, Underrepresented in Medicine status (URiM), family income during adolescence, highest degree held by a guardian, discrimination experience during medical school, federal/state assistance use, and rural versus urban primary home. Descriptive statistics and unadjusted risk ratios were applied to study the relation between Step 1 score and non-modifiable risk factors as well as certain non-modifiable risk factors and ACEs ≥ 3. The mean Step 1 score was 230 (213, 247). Of the students, 28.2% identified ACEs ≥ 3, 13.6% were considered URiM, and 65.4% were female. URiM were 2.34 (1.30, 4.23),females were 2.77 (1.06-7.29), and those who experienced discrimination in medical school were 4.25 (1.85, 9.77) times more likely to have ACEs ≥ 3. Students who had ACEs ≥ 3 were 3.58 (1.75, 7.29) times less likely to meet a minimal threshold for residency interviews of 220. These are the first results to demonstrate a relationship between Step 1 score and ACEs. Those who identified as URiM, females, and those who experienced discrimination in medical school were at a higher risk of ACEs of ≥ 3. Step 1 transitioned to pass/fail in January 2022. However, the first application cycle that residencies will see pass/fail scoring is 2023-2024, and fellowships will continue to see scored Step 1 until, at the earliest, the 2026-2027 application cycle. These data contribute to a foundation of research that could apply to Step 2CK testing scores, and help to inform decisions about the diversity and equity of the residency interview process.
Journal Article
Risk of Cardiovascular Events After COVID-19
2022
We aimed to determine absolute and relative risks of either symptomatic or asymptomatic SARS-CoV-2 infection for late cardiovascular (CV) events and all-cause mortality. We conducted a retrospective double cohort study of patients with either symptomatic or asymptomatic SARS-CoV-2 infection (COVID-19+ cohort) and its documented absence (COVID-19− cohort). The study investigators drew a simple random sample of records from all patients under the Oregon Health & Science University Healthcare (n = 65,585), with available COVID-19 test results, performed March 1, 2020 to September 13, 2020. Exclusion criteria were age <18 years and no established Oregon Health & Science University care. The primary outcome was a composite of CV morbidity and mortality. All-cause mortality was the secondary outcome. The study population included 1,355 patients (mean age 48.7 ± 20.5 years; 770 women [57%], 977 White non-Hispanic [72%]; 1,072 ensured [79%]; 563 with CV disease history [42%]). During a median 6 months at risk, the primary composite outcome was observed in 38 of 319 patients who were COVID-19+ (12%) and 65 of 1,036 patients who were COVID-19− (6%). In the Cox regression, adjusted for demographics, health insurance, and reason for COVID-19 testing, SARS-CoV-2 infection was associated with the risk for primary composite outcome (hazard ratio 1.71, 95% confidence interval 1.06 to 2.78, p = 0.029). Inverse probability-weighted estimation, conditioned for 31 covariates, showed that for every patient who was COVID-19+, the average time to all-cause death was 65.5 days less than when all these patients were COVID-19−: average treatment effect on the treated −65.5 (95% confidence interval −125.4 to −5.61) days, p = 0.032. In conclusion, either symptomatic or asymptomatic SARS-CoV-2 infection is associated with an increased risk for late CV outcomes and has a causal effect on all-cause mortality in a late post-COVID-19 period.
Journal Article
Human cytomegalovirus protein RL1 degrades the antiviral factor SLFN11 via recruitment of the CRL4 E3 ubiquitin ligase complex
by
Nichols, Jenna
,
Fielding, Ceri A.
,
Fletcher-Etherington, Alice
in
Adaptive immunity
,
Biological Sciences
,
Cytomegalovirus
2022
Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.
Journal Article
Variation in human herpesvirus 6B telomeric integration, excision, and transmission between tissues and individuals
by
Neumann, Rita
,
Davison, Andrew J
,
Nichols, Jenna
in
Angina pectoris
,
Chromosomes
,
DNA, Viral - genetics
2021
Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether, we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
Journal Article
ADAM17 targeting by human cytomegalovirus remodels the cell surface proteome to simultaneously regulate multiple immune pathways
2023
Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defences. In exploring the finding that HCMV infection upregulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory anti-viral cytokine TNFa, we discovered the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype ‘sheddase’, a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b’ region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with a HCMV double deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (p<0.05) in an ADAM17-dependent fashion. These included known substrates of ADAM17 with established immunological functions such as TNFR2 and Jagged1, but also numerous novel host and viral targets, such as Nectin1, UL8 and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.
Human cytomegalovirus (HCMV) is an important pathogen, being the commonest infectious cause of brain damage to babies and the primary reason for hospital readmissions in transplant recipients. Even though HCMV induces the strongest immune responses by any human pathogen, it evades host defences and persists for life. This study describes a novel immunoregulatory strategy through which HCMV modulates multiple immune pathways simultaneously, by targeting a single host protein. HCMV UL148 and UL148D impair the maturation of the sheddase, A Disintegrin And Metalloproteinase 17, profoundly altering surface expression of numerous immunoregulatory proteins. This is the first description of viral genes targeting this pathway. Our findings may be relevant for future viral therapies and understanding the impact of HCMV in developmental biology.
Human cytomegalovirus protein RL1 degrades the antiviral factor SLFN11 via recruitment of the CRL4 E3 ubiquitin ligase complex
2021
Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate and adaptive immunity. We have employed two novel, orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins downregulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterised, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.
Previous proteomic analyses of host factors targeted for downregulation by HCMV have focused on early or intermediate stages of infection. Using multiplexed proteomics, we have systematically identified viral factors that target each host protein downregulated during the latest stage of infection, after the onset of viral DNA replication. Schlafen-11 (SLFN11), an interferon-stimulated gene and restriction factor for retroviruses and certain RNA viruses, potently restricted HCMV infection. Our discovery that the late-expressed HCMV protein RL1 targets SLFN11 for proteasomal degradation provides the first evidence for a viral antagonist of this critical cellular protein. We therefore redefine SLFN11 as an important factor that targets DNA viruses as well as RNA viruses, offering novel therapeutic potential via molecules that inhibit RL1-mediated SLFN11 degradation.