Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
37
result(s) for
"Davy, Alice"
Sort by:
Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis
2010
Ephrin-B2/VEGF in angiogenesis control
Ephrin-B ligands are well known as axon guidance molecules. Ephrin-B2 is also known to play a role in angiogenic remodelling. Two studies now show that signalling through ephrin-B2 controls vessel sprouting. Mechanistically, ephrin-B2 seems to function in part by regulating VEGFR internalization and signalling. The finding suggests that blocking ephrin-B2 signalling may be an alternative approach to blocking VEGFR function in angiogenesis.
The protein ephrin-B2 is known to be upregulated during angiogenesis — the growth of new blood vessels — but its precise function has been unclear. Here it is shown that signalling through ephrin-B2 controls vessel sprouting. Mechanistically, ephrin-B2 seems to function in part by regulating the internalization of vascular endothelial growth factor receptors (VEGFRs). The results indicate that blocking ephrin-B2 signalling might be an alternative to blocking VEGFR function to disrupt angiogenesis in tumours.
In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions
1
,
2
,
3
. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.
Journal Article
Inhibition of Gap Junction Communication at Ectopic Eph/ephrin Boundaries Underlies Craniofrontonasal Syndrome
2006
Mutations in X-linked ephrin-B1 in humans cause craniofrontonasal syndrome (CFNS), a disease that affects female patients more severely than males. Sorting of ephrin-B1-positive and -negative cells following X-inactivation has been observed in ephrin-B1(+/-) mice; however, the mechanisms by which mosaic ephrin-B1 expression leads to cell sorting and phenotypic defects remain unknown. Here we show that ephrin-B1(+/-) mice exhibit calvarial defects, a phenotype autonomous to neural crest cells that correlates with cell sorting. We have traced the causes of calvarial defects to impaired differentiation of osteogenic precursors. We show that gap junction communication (GJC) is inhibited at ectopic ephrin boundaries and that ephrin-B1 interacts with connexin43 and regulates its distribution. Moreover, we provide genetic evidence that GJC is implicated in the calvarial defects observed in ephrin-B1(+/-) embryos. Our results uncover a novel role for Eph/ephrins in regulating GJC in vivo and suggest that the pleiotropic defects seen in CFNS patients are due to improper regulation of GJC in affected tissues.
Journal Article
EphB–ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells
by
Sancho, Elena
,
Humà, Mireia
,
Lloreta, Josep
in
Adenoma - metabolism
,
Adenoma - pathology
,
Adenoma - prevention & control
2007
The genes encoding tyrosine kinase receptors EphB2 and EphB3 are β-catenin and Tcf4 target genes in colorectal cancer (CRC) and in normal intestinal cells
1
,
2
. In the intestinal epithelium, EphB signaling controls the positioning of cell types along the crypt-villus axis
1
. In CRC, EphB activity suppresses tumor progression beyond the earliest stages
3
,
4
. Here we show that EphB receptors compartmentalize the expansion of CRC cells through a mechanism dependent on E-cadherin–mediated adhesion. We demonstrate that EphB-mediated compartmentalization restricts the spreading of EphB-expressing tumor cells into ephrin-B1–positive territories
in vitro
and
in vivo
. Our results indicate that CRC cells must silence EphB expression to avoid repulsive interactions imposed by normal ephrin-B1–expressing intestinal cells at the onset of tumorigenesis.
Journal Article
Cortical Abnormalities and Non-Spatial Learning Deficits in a Mouse Model of CranioFrontoNasal Syndrome
2014
Eph receptors and their ephrin ligands play critical roles in the development of the nervous system, however, less is known about their functions in the adult brain. Here, we investigated the function of ephrinB1, an ephrinB family member that is mutated in CranioFrontoNasal Syndrome. We show that ephrinB1 deficient mice (EfnB1(Y/-)) demonstrate spared spatial learning and memory but exhibit exclusive impairment in non-spatial learning and memory tasks. We established that ephrinB1 does not control learning and memory through direct modulation of synaptic plasticity in adults, since it is not expressed in the adult brain. Rather we show that the cortex of EfnB1(Y/-) mice displayed supernumerary neurons, with a particular increase in calretinin-positive interneurons. Further, the increased neuron number in EfnB1(Y/-) mutants correlated with shorter dendritic arborization and decreased spine densities of cortical pyramidal neurons. Our findings indicate that ephrinB1 plays an important role in cortical maturation and that its loss has deleterious consequences on selective cognitive functions in the adult.
Journal Article
Eph/Ephrin Signaling Controls Progenitor Identities In The Ventral Spinal Cord
by
Escalas, Nathalie
,
Liebl, Daniel J
,
Laussu, Julien
in
Cell cycle
,
Developmental stages
,
Embryos
2017
Background In the vertebrate spinal cord, motor neurons (MN) are generated in stereotypical numbers from a pool of dedicated progenitors (pMN) whose number depends on signals that control their specification but also their proliferation and differentiation rates. Although the initial steps of pMN specification have been extensively studied, how pMN numbers are regulated over time is less well characterized. Results Here, we show that ephrinB2 and ephrinB3 are differentially expressed in progenitor domains in the ventral spinal cord with several Eph receptors more broadly expressed. Genetic loss-of-function analyses show that ephrinB2 and ephrinB3 inversely control pMN numbers and that these changes in progenitor numbers correlate with changes in motor neuron numbers. Detailed phenotypic analyses by immunostaining and genetic interaction studies between ephrinB2 and Shh indicate that changes in pMN numbers in ephrin mutants are due to alteration in progenitor identity at late stages of development. Conclusions Altogether our data reveal that Eph:ephrin signaling is required to control progenitor identities in the ventral spinal cord.
Journal Article
Ephrin-B2 paces neuronal production in the developing neocortex
by
Fawal, Mohamad-Ali
,
Audouard, Christophe
,
Kischel, Anthony
in
Animal Models
,
Biomedical and Life Sciences
,
Cell interactions
2020
Background
During mammalian cerebral cortex development, different types of projection neurons are produced in a precise temporal order and in stereotypical numbers. The mechanisms regulating timely generation of neocortex projection neurons and ensuring production in sufficient numbers of each neuronal identity are only partially understood.
Results
Here, we show that ephrin-B2, a member of the Eph:ephrin cell-to-cell communication pathway, sets the neurogenic tempo in the neocortex. Indeed, conditional mutant embryos for ephrin-B2 exhibit a transient delay in neurogenesis and acute stimulation of Eph signaling by in utero injection of synthetic ephrin-B2 led to a transient increase in neuronal production. Using genetic approaches we show that ephrin-B2 acts on neural progenitors to control their differentiation in a juxtacrine manner. Unexpectedly, we observed that perinatal neuron numbers recovered following both loss and gain of ephrin-B2, highlighting the ability of neural progenitors to adapt their behavior to the state of the system in order to produce stereotypical numbers of neurons.
Conclusions
Altogether, our data uncover a role for ephrin-B2 in embryonic neurogenesis and emphasize the plasticity of neuronal production in the neocortex.
Journal Article
Cochlear supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 signalling
2015
In mammals, cochlear sensory hair cells that are responsible for hearing are postmitotic and are not replaced after loss. One of the most promising strategies to regenerate hair cells is to identify and inhibit the factors preventing the conversion of adjacent non-sensory supporting cells into hair cells. Here we demonstrate that mammalian hair cells can be directly generated from supporting cells by inhibition of ephrin-B2 signalling. Using either ephrin-B2 conditional knockout mice, shRNA-mediated gene silencing or soluble inhibitors, we found that downregulation of ephrin-B2 signalling at embryonic stages results in supporting cell translocation into hair cell layers and subsequent switch in cell identity from supporting cell to hair cell fate. As transdifferentiation is here a result of displacement across boundary, this original finding presents the interest that newly generated hair cells directly integrate either hair cell layer, then would be likely more rapidly able to fit into functional circuitry.
Cochlear sensory hair cells produced during development are not replaced after loss so converting the surrounding supporting cells into hair cells could be a potential regenerative strategy. Here the authors show that hair cells can be directly generated from adjacent supporting cells in developing mouse embryos by inhibition of ephrin-B2 signalling.
Journal Article
Impact of Metabolic Pathways and Epigenetics on Neural Stem Cells
2018
Balancing self-renewal with differentiation is crucial for neural stem cells (NSC) functions to ensure tissue development and homeostasis. Over the last years, multiple studies have highlighted the coupling of either metabolic or epigenetic reprogramming to NSC fate decisions. Metabolites are essential as they provide the energy and building blocks for proper cell function. Moreover, metabolites can also function as substrates and/or cofactors for epigenetic modifiers. It is becoming more evident that metabolic alterations and epigenetics rewiring are highly intertwined; however, their relation regarding determining NSC fate is not well understood. In this review, we summarize the major metabolic pathways and epigenetic modifications that play a role in NSC. We then focus on the notion that nutrients availability can function as a switch to modify the epigenetic machinery and drive NSC sequential differentiation during embryonic neurogenesis.
Journal Article
Population Dynamics and Neuronal Polyploidy in the Developing Neocortex
2020
The mammalian neocortex is composed of different subtypes of projection neurons that are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and neuronal populations are still poorly characterized. Here, we describe a medium throughput approach based on flow cytometry and well-known identity markers of cortical subpopulations to collect quantitative data over the course of mouse neocortex development. We collected a complete dataset in a physiological developmental context on two progenitor and two neuron populations, including relative proportions and absolute numbers. Our study reveals unexpected total numbers of Tbr2+ progenitors. In addition, we show that polyploid neurons are present throughout neocortex development.
Journal Article
Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner
2000
The ephrins are membrane‐tethered ligands for the Eph receptor tyrosine kinases, which play important roles in patterning of the nervous and vascular systems. It is now clear that ephrins are more than just ligands and can also act as signalling‐competent receptors, participating in bidirectional signalling. We have recently shown that ephrin‐A5 signals within caveola‐like domains of the plasma membrane upon engagement with its cognate Eph receptor, leading to increased adhesion of the cells to fibronectin. Here we show that ephrin‐A5 controls sequential biological events that are consistent with its role in neuronal guidance. Activation of ephrin‐A5 induces an initial change in cell adhesion followed by changes in cell morphology. Both effects are dependent on the activation of β1 integrin involving members of the Src family of protein tyrosine kinases. The prolonged activation of ERK‐1 and ERK‐2 is required for the change in cell morphology. Our work suggests a new role for class A ephrins in specifying the affinity of the cells towards various extracellular substrates by regulating integrin function.
Journal Article