Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
100 result(s) for "Dawid, A. Philip"
Sort by:
Probabilistic sensitivity analysis in health economics
Health economic evaluations have recently become an important part of the clinical and medical research process and have built upon more advanced statistical decision-theoretic foundations. In some contexts, it is officially required that uncertainty about both parameters and observable variables be properly taken into account, increasingly often by means of Bayesian methods. Among these, probabilistic sensitivity analysis has assumed a predominant role. The objective of this article is to review the problem of health economic assessment from the standpoint of Bayesian statistical decision theory with particular attention to the philosophy underlying the procedures for sensitivity analysis.
EXTENDED CONDITIONAL INDEPENDENCE AND APPLICATIONS IN CAUSAL INFERENCE
The goal of this paper is to integrate the notions of stochastic conditional independence and variation conditional independence under a more general notion of extended conditional independence. We show that under appropriate assumptions the calculus that applies for the two cases separately (axioms of a separoid) still applies for the extended case. These results provide a rigorous basis for a wide range of statistical concepts, including ancillarity and sufficiency, and, in particular, the Decision Theoretic framework for statistical causality, which uses the language and calculus of conditional independence in order to express causal properties and make causal inferences.
Game Theory, Maximum Entropy, Minimum Discrepancy and Robust Bayesian Decision Theory
We describe and develop a close relationship between two problems that have customarily been regarded as distinct: that of maximizing entropy, and that of minimizing worst-case expected loss. Using a formulation grounded in the equilibrium theory of zero-sum games between Decision Maker and Nature, these two problems are shown to be dual to each other, the solution to each providing that to the other. Although Topsøe described this connection for the Shannon entropy over 20 years ago, it does not appear to be widely known even in that important special case. We here generalize this theory to apply to arbitrary decision problems and loss functions. We indicate how an appropriate generalized definition of entropy can be associated with such a problem, and we show that, subject to certain regularity conditions, the above-mentioned duality continues to apply in this extended context. This simultaneously provides a possible rationale for maximizing entropy and a tool for finding robust Bayes acts. We also describe the essential identity between the problem of maximizing entropy and that of minimizing a related discrepancy or divergence between distributions. This leads to an extension, to arbitrary discrepancies, of a well-known minimax theorem for the case of Kullback-Leibler divergence (the \"redundancy-capacity theorem\" of information theory). For the important case of families of distributions having certain mean values specified, we develop simple sufficient conditions and methods for identifying the desired solutions. We use this theory to introduce a new concept of \"generalized exponential family\" linked to the specific decision problem under consideration, and we demonstrate that this shares many of the properties of standard exponential families. Finally, we show that the existence of an equilibrium in our game can be rephrased in terms of a \"Pythagorean property\" of the related divergence, thus generalizing previously announced results for Kullback-Leibler and Bregman divergences.
Minimum Scoring Rule Inference
Proper scoring rules are devices for encouraging honest assessment of probability distributions. Just like log-likelihood, which is a special case, a proper scoring rule can be applied to supply an unbiased estimating equation for any statistical model, and the theory of such equations can be applied to understand the properties of the associated estimator. In this paper, we discuss some novel applications of scoring rules to parametric inference. In particular, we focus on scoring rule test statistics, and we propose suitable adjustments to allow reference to the usual asymptotic chi-squared distribution. We further explore robustness and interval estimation properties, by both theory and simulations.
PROPER LOCAL SCORING RULES ON DISCRETE SAMPLE SPACES
A scoring rule is a loss function measuring the quality of a quoted probability distribution Q for a random variable X, in the light of the realized outcome x of X; it is proper if the expected score, under any distribution P for X, is minimized by quoting Q = P. Using the fact that any differentiable properscoring rule on a finite sample space X is the gradient of a concave homogeneous function, we consider when such a rule can be local in the sense of depending only on the probabilities quoted for points in a nominated neighborhood of x. Under mild conditions, we characterize such a proper local scoring rule in terms of a collection of homogeneous functions on the cliques of an undirected graph on the space X. A useful property of such rules is that the quoted distribution Q need only be known up to a scale factor. Examples of the use of such scoring rules include Besag's pseudo-likelihood and Hyvärinen's method of ratio matching.
PROPER LOCAL SCORING RULES
We investigate proper scoring rules for continuous distributions on the real line. It is known that the log score is the only such rule that depends on the quoted density only through its value at the outcome that materializes. Here we allow further dependence on a finite number m of derivatives of the density at the outcome, and describe a large class of such m-local proper scoring rules: these exist for all even m but no odd m. We further show that for m ≥ 2 all such m-local rules can be computed without knowledge of the normalizing constant of the distribution.
Key questions for modelling COVID-19 exit strategies
Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute ‘Models for an exit strategy’ workshop (11–15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.
STRUCTURAL MARKOV GRAPH LAWS FOR BAYESIAN MODEL UNCERTAINTY
This paper considers the problem of defining distributions over graphical structures. We propose an extension of the hyper Markov properties of Dawid and Lauritzen [Ann. Statist. 21 (1993) 1272-1317], which we term structural Markov properties, for both undirected decomposable and directed acyclic graphs, which requires that the structure of distinct components of the graph be conditionally independent given the existence of a separating component. This allows the analysis and comparison of multiple graphical structures, while being able to take advantage of the common conditional independence constraints. Moreover, we show that these properties characterise exponential families, which form conjugate priors under sampling from compatible Markov distributions.
Resolving some contradictions in the theory of linear opinion pools
Bradley (Theory Decis 85:5–20, 2018) develops some theory of the linear opinion pool, in apparent contradiction to results of Dawid et al. (Test 4:263–314, 1995). We investigate the sources of these contradictions, and in particular identify a mathematical error in Bradley (2018) that invalidates his main result.
Stochastic mechanistic interaction
We define mechanistic interaction between the effects of two variables on an outcome in terms of departure of these effects from a generalized noisy-OR model in a stratum of the population. We develop a fully probabilistic framework for the observational identification of this type of interaction via excess risk or superadditivity, one novel feature of which is its applicability when the interacting variables have been generated by arbitrarily dichotomizing continuous exposures. The method allows for stochastic mediators of the interacting effects. The required assumptions are provided in the form of conditional independencies between the problem variables, which may relate to a causal-graph representation of the problem. We also develop a theory of mechanistic interaction between effects associated with specific paths of the causal graph.