Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
68
result(s) for
"Dawson, Terence P."
Sort by:
Impacts of land use, population, and climate change on global food security
by
Dawson, Terence P.
,
Smith, Pete
,
Molotoks, Amy
in
Agricultural production
,
Calories
,
Climate change
2021
In recent years, global hunger has begun to rise, returning to levels from a decade ago. Climate change is a key driver behind these recent rises and is one of the leading causes of severe food crises. When coupled with population growth and land use change, future climate variability is predicted to have profound impacts on global food security. We examine future global impacts of climate variability, population, and land use change on food security to 2050, using the modeling framework FEEDME (Food Estimation and Export for Diet and Malnutrition Evaluation). The model uses national food balance sheets (FBS) to determine mean per capita calories, hence incorporating an assumption that minimum dietary energy requirements (MDER) remain constant. To account for climate variability, we use two Representative Concentration Pathway (RCP) scenarios from the Intergovernmental Panel on Climate Change (IPCC), alongside three Shared Socio‐economic Pathway (SSP) scenarios incorporating land use and population change within the model. Our results indicate that SSP scenarios have a larger impact on future food insecurity, in particular because of projected changes in population. Countries with a projected decrease in population growth had higher food security, while those with a projected rapid population growth tended to experience the worst impacts on food security. Although climate change scenarios had an effect on future crop yields, population growth appeared to be the dominant driver of change in undernourishment prevalence. Therefore, strategies to mitigate the consequences of projected population growth, including improved maternal health care, increasing equality of access to food at the national level, closing the yield gap, and changes in trade patterns, are essential to ensuring severe future food insecurity is avoided. The global Food Estimation and Export for Diet and Malnutrition Evaluation model uses FAO methodology to estimate national undernourishment prevalence as a proportion of population undernourished. Using a baseline period of 2000‐2002, projections for 2050 even under the lowest global impact scenario show significant prevalence of undernourishment. This emphasises the need for quick action, particularly in low‐income countries to avoid future food insecurity.
Journal Article
Beyond Predictions: Biodiversity Conservation in a Changing Climate
by
House, Joanna I.
,
Dawson, Terence P.
,
Mace, Georgina M.
in
Animal, plant and microbial ecology
,
Applied ecology
,
Biodiversity
2011
Climate change is predicted to become a major threat to biodiversity in the 21st century, but accurate predictions and effective solutions have proved difficult to formulate. Alarming predictions have come from a rather narrow methodological base, but a new, integrated science of climate-change biodiversity assessment is emerging, based on multiple sources and approaches. Drawing on evidence from paleoecological observations, recent phenological and microevolutionary responses, experiments, and computational models, we review the insights that different approaches bring to anticipating and managing the biodiversity consequences of climate change, including the extent of species' natural resilience. We introduce a framework that uses information from different sources to identify vulnerability and to support the design of conservation responses. Although much of the information reviewed is on species, our framework and conclusions are also applicable to ecosystems, habitats, ecological communities, and genetic diversity, whether terrestrial, marine, or fresh water.
Journal Article
Integrating abundance and functional traits reveals new global hotspots of fish diversity
2013
Global reef fish diversity is studied with metrics incorporating species abundances and functional traits; these identify diversity hotspots corresponding to the diversity of functional traits amongst individuals in the community, and greater evenness in the abundance of reef fishes at higher latitudes, findings that contrast with patterns reported previously using traditional richness-based methods.
Cooler biodiversity hotspots revealed
Traditional measures of biodiversity record species richness across different areas — in other words, they just count the number of species. This approach takes no account of the fact that different species will have different abundances, or that the range of functional traits present in a community is not dependent solely on the number of species. This paper presents a new measure of functional diversity, incorporating species abundances and functional traits into a global census of a vertebrate group —2,473 marine reef fish species — at 1,844 sites. The results reveal previously unknown diversity hotspots in temperate regions and in the Tropical Eastern Pacific, which are outside the species-rich tropical regions traditionally associated with high biodiversity.
Species richness has dominated our view of global biodiversity patterns for centuries
1
,
2
. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management
3
,
4
. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling)
5
. Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao’s
Q
6
), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only
7
,
8
. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites (‘community evenness’), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness
2
,
4
. Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values.
Journal Article
Land cover preferences and spatiotemporal associations of ungulates within a Scottish mammal community
by
Dawson, Terence P.
,
Pettorelli, Nathalie
,
Lovell, Connor
in
Anti-predator behavior
,
camera trapping
,
Cervus elaphus
2024
In the degraded and modified environment of the Scottish Highlands, novel ungulate communities have arisen following local extinctions, reintroductions, and the introduction of non‐native species. An understanding of the dynamics and interactions within these unique mammal communities is important as many of these mammals represent keystone species with disproportionate impacts on the environment. Using a camera trap survey, we investigated land cover preferences and spatiotemporal interactions within a Scottish ungulate community: the sika deer (Cervus nippon), the roe deer (Capreolus capreolus), the red deer (Cervus elaphus), and the wild boar (Sus scrofa). We used generalised linear models to assess land cover preferences and the effect of human disturbance; spatiotemporal interactions were characterised using time interval modelling. We found that sika deer and roe deer preferred coniferous plantations and grasslands, with sika deer additionally preferring woodland. For red deer, we found a slight preference for wetland over woodland; however, the explained variance was low. Finally, wild boar preferred grassland and woodland and avoided coniferous plantations, heathland, and shrubland. Contrary to our expectations, we found no evidence that human disturbance negatively impacted ungulates' distributions, potentially because ungulates temporally avoid humans or because dense vegetation cover mitigates the impacts of humans on their distributions. Furthermore, we detected a spatiotemporal association between sika deer and roe deer. Although the underlying cause of this is unknown, we hypothesise that interactions such as grazing facilitation or an anti‐predator response to culling could be driving this pattern. Our work provides a preliminary analysis of the dynamics occurring within a novel ungulate community and also highlights current knowledge gaps in our understanding of the underlying mechanisms dictating the observed spatiotemporal associations. Using a camera trap survey, we investigated land cover preferences and spatiotemporal interactions within a Scottish ungulate community: the sika deer (Cervus nippon), the roe deer (Capreolus capreolus), the red deer (Cervus elaphus), and the wild boar (Sus scrofa). Ungulates showed some land cover preferences, whilst we found evidence of a spatiotemporal association between sika deer and roe deer. Although the underlying cause of this is unknown, we hypothesise that interactions such as grazing facilitation or an anti‐predator response to culling could be driving this pattern.
Journal Article
Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
2003
Modelling strategies for predicting the potential impacts of climate change on the natural distribution of species have often focused on the characterization of a species' bioclimate envelope. A number of recent critiques have questioned the validity of this approach by pointing to the many factors other than climate that play an important part in determining species distributions and the dynamics of distribution changes. Such factors include biotic interactions, evolutionary change and dispersal ability. This paper reviews and evaluates criticisms of bioclimate envelope models and discusses the implications of these criticisms for the different modelling strategies employed. It is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity. However, it is stressed that the spatial scale at which these models are applied is of fundamental importance, and that model results should not be interpreted without due consideration of the limitations involved. A hierarchical modelling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent context.
Journal Article
Selecting thresholds of occurrence in the prediction of species distributions
by
Dawson, Terence P.
,
Pearson, Richard G.
,
Berry, Pam M.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Biological and medical sciences
2005
Transforming the results of species distribution modelling from probabilities of or suitabilities for species occurrence to presences/absences needs a specific threshold. Even though there are many approaches to determining thresholds, there is no comparative study. In this paper, twelve approaches were compared using two species in Europe and artificial neural networks, and the modelling results were assessed using four indices: sensitivity, specificity, overall prediction success and Cohen's kappa statistic. The results show that prevalence approach, average predicted probability/suitability approach, and three sensitivity-specificity-combined approaches, including sensitivity-specificity sum maximization approach, sensitivity-specificity equality approach and the approach based on the shortest distance to the top-left corner (0,1) in ROC plot, are the good ones. The commonly used kappa maximization approach is not as good as the afore-mentioned ones, and the fixed threshold approach is the worst one. We also recommend using datasets with prevalence of 50% to build models if possible since most optimization criteria might be satisfied or nearly satisfied at the same time, and therefore it's easier to find optimal thresholds in this situation.
Journal Article
Extending the timescale and range of ecosystem services through paleoenvironmental analyses, exemplified in the lower Yangtze basin
2012
In China, and elsewhere, long-term economic development and poverty alleviation need to be balanced against the likelihood of ecological failure. Here, we show how paleoenvironmental records can provide important multidecadal perspectives on ecosystem services (ES). More than 50 different paleoenvironmental proxy records can be mapped to a wide range of ES categories and subcategories. Lake sediments are particularly suitable for reconstructing records of regulating services, such as soil stability, sediment regulation, and water purification, which are often less well monitored. We demonstrate the approach using proxy records from two sets of lake sediment sequences in the lower Yangtze basin covering the period 1800–2006, combined with recent socioeconomic and climate records. We aggregate the proxy records into a regional regulating services index to show that rapid economic growth and population increases since the 1950s are strongly coupled to environmental degradation. Agricultural intensification from the 1980s onward has been the main driver for reducing rural poverty but has led to an accelerated loss of regulating services. In the case of water purification, there is strong evidence that a threshold has been transgressed within the last two decades. The current steep trajectory of the regulating services index implies that regional land management practices across a large agricultural tract of eastern China are critically unsustainable.
Journal Article
Global Hotspots of Conflict Risk between Food Security and Biodiversity Conservation
by
Dawson, Terence
,
Molotoks, Amy
,
Kuhnert, Matthias
in
Agricultural expansion
,
Biodiversity
,
biodiversity conservation
2017
The global challenges of food security and biodiversity are rarely addressed together, though recently there has been an increasing awareness that the two issues are closely related. The majority of land available for agriculture is already used for food production, but despite the productivity gains, one in nine people worldwide are classified as food insecure. There is an increasing risk that addressing food insecurity through methods such as agricultural expansion or intensification could lead to biodiversity loss through destruction of habitats important for conservation. This analysis uses various indicators of biodiversity at a global scale, including biodiversity hotspots, total species richness, and threatened and endemic species richness. Areas where high biodiversity coexists with high food insecurity or a high risk of agricultural expansion, were examined and found to mainly occur in the tropics, with Madagascar standing out in particular. The areas identified are especially at risk of biodiversity loss, and so are global priorities for further research and for policy development to address food insecurity and biodiversity loss together.
Journal Article
It's not the 'what', but the 'how': Exploring the role of debt in natural resource (un)sustainability
by
Gordon, Iain J.
,
Gonzalez-Redin, Julen
,
Dawson, Terence P.
in
Analysis
,
Availability
,
Climate change
2018
A debt-based economy cannot survive without economic growth. However, if private debt consistently grows faster than GDP, the consequences are financial crises and the current unprecedented level of global debt. This policy dilemma is aggravated by the lack of analyses factoring the impact of debt-growth cycles on the environment. What is really the relationship between debt and natural resource sustainability, and what is the role of debt in decoupling economic growth from natural resource availability? Here we present a conceptual Agent-Based Model (ABM) that integrates an environmental system into an ABM representation of Steve Keen's debt-based economic models. Our model explores the extent to which debt-driven processes, within debt-based economies, enhance the decoupling between economic growth and the availability of natural resources. Interestingly, environmental and economic collapse in our model are not caused by debt growth, or the debt-based nature of the economic system itself (i.e. the 'what'), but rather, these are due to the inappropriate use of debt by private actors (i.e. the 'how'). Firms inappropriately use bank credits for speculative goals-rather than production-oriented ones-and for exponentially increasing rates of technological development. This context creates temporal mismatches between natural resource growth and firms' resource extraction rates, as well as between economic growth and the capacity of the government to effectively implement natural resource conservation policies. This paper discusses the extent to which economic growth and the availability of natural resources can be re-coupled through a more sustainable use of debt, for instance by shifting mainstream banking forces to partially support environmental conservation as well as economic growth.
Journal Article
Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas
by
Alexander, Timothy J.
,
Dawson, Terence P.
,
Thomson, Russell J.
in
Algae
,
Animals
,
Biodiversity
2015
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.
Journal Article