Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,347
result(s) for
"Day, David A."
Sort by:
Energy costs of salt tolerance in crop plants
by
Wege, Stefanie
,
Arsova, Borjana
,
Day, David A.
in
Agricultural economics
,
aquaporins
,
barley and wheat
2020
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion up take are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H⁺ -ATPase also is a critical component. One proposed leak, that of Na⁺ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na⁺ and Cl⁻ concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assess ment of the energy costs of Na Cl tolerance to guide breeding and engineering of molecular components.
Journal Article
AtNDB2 Is the Main External NADH Dehydrogenase in Mitochondria and Is Important for Tolerance to Environmental Stress
by
Sweetman, Crystal
,
Waterman, Christopher D.
,
Smith, Penelope M.C.
in
Arabidopsis - enzymology
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2019
In addition to the classical electron transport pathway coupled to ATP synthesis, plant mitochondria have an alternative pathway that involves type II NAD(P)H dehydrogenases (NDs) and alternative oxidase (AOX). This alternative pathway participates in thermogenesis in select organs of some species and is thought to help prevent cellular damage during exposure to environmental stress. Here, we investigated the function and role of one alternative path component, AtNDB2, using a transgenic approach in Arabidopsis (Arabidopsis thaliana). Disruption of AtNDB2 expression via T-DNA insertion led to a 90% decrease of external NADH oxidation in isolated mitochondria. Overexpression of AtNDB2 led to increased AtNDB2 protein abundance in mitochondria but did not enhance external NADH oxidation significantly unless AtAOX1A was concomitantly overexpressed and activated, demonstrating a functional link between these enzymes. Plants lacking either AtAOX1A or AtNDB2 were more sensitive to combined drought and elevated light treatments, whereas plants overexpressing these components showed increased tolerance and capacity for poststress recovery. We conclude that AtNDB2 is the predominant external NADH dehydrogenase in mitochondria and together with AtAOX1A forms a complete, functional, nonphosphorylating pathway of electron transport, whose operation enhances tolerance to environmental stress. This study demonstrates that at least one of the alternative NDs, as well as AOX, are important for the stress response.
Journal Article
Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules
by
Day, David A.
,
Smith, Penelope M. C.
,
Ramesh, Sunita A.
in
Biological Transport
,
Carbon
,
Enzymes
2021
Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
Journal Article
The crucial roles of mitochondria in supporting C₄ photosynthesis
by
Sage, Tammy L.
,
Asao, Shinichi
,
Fan, Yuzhen
in
C4 photosynthesis
,
C4 plants
,
carbon metabolism
2022
C₄ photosynthesis involves a series of biochemical and anatomical traits that significantly improve plant productivity under conditions that reduce the efficiency of C₃ photosynthesis. We explore how evolution of the three classical biochemical types of C₄ photosynthesis (NADP-ME, NAD-ME and PCK types) has affected the functions and properties of mitochondria. Mitochondria in C₄ NAD-ME and PCK types play a direct role in decarboxylation of metabolites for C₄ photosynthesis. Mitochondria in C₄ PCK type also provide ATP for C₄ metabolism, although this role for ATP provision is not seen in NAD-ME type. Such involvement has increased mitochondrial abundance/size and associated enzymatic capacity, led to changes in mitochondrial location and ultrastructure, and altered the role of mitochondria in cellular carbon metabolism in the NAD-ME and PCK types. By contrast, these changes in mitochondrial properties are absent in the C₄ NADP-ME type and C₃ leaves, where mitochondria play no direct role in photosynthesis. From an eco-physiological perspective, rates of leaf respiration in darkness vary considerably among C₄ species but does not differ systematically among the three C₄ types. This review outlines further mitochondrial research in key areas central to the engineering of the C₄ pathway into C₃ plants and to the understanding of variation in rates of C₄ dark respiration.
Journal Article
Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH₄⁺ transport
by
Smith, Sally E.
,
Chiasson, David M.
,
Day, David A.
in
ammonium compounds
,
Ammonium Compounds - metabolism
,
arabidopsis-thaliana
2014
Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH ₄⁺) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix–loop–helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH ₄⁺ channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH ₄⁺ transport common to both yeast and plants.
Journal Article
Legume Alternative Oxidase Isoforms Show Differential Sensitivity to Pyruvate Activation
by
Miller, Troy K.
,
Day, David A.
,
Sweetman, Crystal
in
activation
,
Alternative oxidase
,
Cotyledons
2022
Alternative oxidase (AOX) is an important component of the plant respiratory pathway, enabling a route for electrons that bypasses the energy-conserving, ROS-producing complexes of the mitochondrial electron transport chain. Plants contain numerous isoforms of AOX, classified as either AOX1 or AOX2. AOX1 isoforms have received the most attention due to their importance in stress responses across a wide range of species. However, the propensity for at least one isoform of AOX2 to accumulate to very high levels in photosynthetic tissues of all legumes studied to date, suggests that this isoform has specialized roles, but we know little of its properties. Previous studies with sub-mitochondrial particles of soybean cotyledons and roots indicated that differential expression of GmAOX1, GmAOX2A, and GmAOX2D across tissues might confer different activation kinetics with pyruvate. We have investigated this using recombinantly expressed isoforms of soybean AOX in a previously described bacterial system ( Selinski et al., 2016 , Physiologia Plantarum 157, 264-279). Pyruvate activation kinetics were similar between the two GmAOX2 isoforms but differed substantially from those of GmAOX1, suggesting that selective expression of AOX1 and 2 could determine the level of AOX activity. However, this alone cannot completely explain the differences seen in sub-mitochondrial particles isolated from different legume tissues and possible reasons for this are discussed.
Journal Article
Transport processes of the legume symbiosome membrane
by
Day, David A.
,
Smith, Penelope M. C.
,
Clarke, Victoria C.
in
Bacteria
,
Bacterial infections
,
Barriers
2014
The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.
Journal Article