Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
68
result(s) for
"Dayeh, Shadi A."
Sort by:
Flexible, scalable, high channel count stereo-electrode for recording in the human brain
2024
Over the past decade, stereotactically placed electrodes have become the gold standard for deep brain recording and stimulation for a wide variety of neurological and psychiatric diseases. Current electrodes, however, are limited in their spatial resolution and ability to record from small populations of neurons, let alone individual neurons. Here, we report on an innovative, customizable, monolithically integrated human-grade flexible depth electrode capable of recording from up to 128 channels and able to record at a depth of 10 cm in brain tissue. This thin, stylet-guided depth electrode is capable of recording local field potentials and single unit neuronal activity (action potentials), validated across species. This device represents an advance in manufacturing and design approaches which extends the capabilities of a mainstay technology in clinical neurology.
Electrodes available for deep brain recording and stimulation have a number of limitations. Here the authors describe a thin-film depth electrode that may offer improved spatial and temporal resolution for recording brain activity.
Journal Article
Lattice strain effects on the optical properties of MoS2 nanosheets
“Strain engineering” in functional materials has been widely explored to tailor the physical properties of electronic materials and improve their electrical and/or optical properties. Here, we exploit both in plane and out of plane uniaxial tensile strains in MoS
2
to modulate its band gap and engineer its optical properties. We utilize X-ray diffraction and cross-sectional transmission electron microscopy to quantify the strains in the as-synthesized MoS
2
nanosheets and apply measured shifts of Raman-active modes to confirm lattice strain modification of both the out-of-plane and in-plane phonon vibrations of the MoS
2
nanosheets. The induced band gap evolution due to in-plane and out-of-plane tensile stresses is validated by photoluminescence (PL) measurements, promising a potential route for unprecedented manipulation of the physical, electrical and optical properties of MoS
2
.
Journal Article
A fabrication process for flexible single-crystal perovskite devices
by
Lo, Yu-Hwa
,
Xu, Sheng
,
Wang, Chunfeng
in
Carrier mobility
,
Carrier recombination
,
Carrier transport
2020
Organic–inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications
1
–
4
. Although many approaches focus on polycrystalline materials
5
–
7
, single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour
8
–
10
and lower defect concentrations
11
,
12
. However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging
12
. Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI
3
, to MAPb
0.5
Sn
0.5
I
3
). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead–tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead–tin-gradient structures with an average efficiency of 18.77 per cent).
A solution-based lithography-assisted epitaxial-growth-and-transfer method is used to fabricate single-crystal hybrid perovskites on any surface, with precise control of the thickness, area and chemical composition gradient.
Journal Article
Physics-Based Device Models and Progress Review for Active Piezoelectric Semiconductor Devices
2020
Piezoelectric devices transduce mechanical energy to electrical energy by elastic deformation, which distorts local dipoles in crystalline materials. Amongst electromechanical sensors, piezoelectric devices are advantageous because of their scalability, light weight, low power consumption, and readily built-in amplification and ability for multiplexing, which are essential for wearables, medical devices, and robotics. This paper reviews recent progress in active piezoelectric devices. We classify these piezoelectric devices according to the material dimensionality and present physics-based device models to describe and quantify the piezoelectric response for one-dimensional nanowires, emerging two-dimensional materials, and three-dimensional thin films. Different transduction mechanisms and state-of-the-art devices for each type of material are reviewed. Perspectives on the future applications of active piezoelectric devices are discussed.
Journal Article
In situ atomic-scale imaging of electrochemical lithiation in silicon
by
Huang, Jian Yu
,
Liu, Xiao Hua
,
Dayeh, Shadi A.
in
639/301/299/161
,
639/925/357
,
639/925/930/328/2082
2012
In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that
in situ
transmission electron microscopy can be used to study the dynamic lithiation process of single-crystal silicon with atomic resolution. We observe a sharp interface (∼1 nm thick) between the crystalline silicon and an amorphous Li
x
Si alloy. The lithiation kinetics are controlled by the migration of the interface, which occurs through a ledge mechanism involving the lateral movement of ledges on the close-packed {111} atomic planes. Such ledge flow processes produce the amorphous Li
x
Si alloy through layer-by-layer peeling of the {111} atomic facets, resulting in the orientation-dependent mobility of the interfaces.
In situ
transmission electron microscopy can be used to study the dynamic lithiation of single-crystal silicon with atomic resolution.
Journal Article
Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components
by
Hossain, Lorraine
,
Carter, Bob S.
,
Dayeh, Shadi A.
in
Animals
,
Biology and Life Sciences
,
Brain
2019
Electrocorticography (ECoG) is becoming more prevalent due to improvements in fabrication and recording technology as well as its ease of implantation compared to intracortical electrophysiology, larger cortical coverage, and potential advantages for use in long term chronic implantation. Given the flexibility in the design of ECoG grids, which is only increasing, it remains an open question what geometry of the electrodes is optimal for an application. Conductive polymer, PEDOT:PSS, coated microelectrodes have an advantage that they can be made very small without losing low impedance. This makes them suitable for evaluating the required granularity of ECoG recording in humans and experimental animals. We used two-dimensional (2D) micro-ECoG grids to record intra-operatively in humans and during acute implantations in mouse with separation distance between neighboring electrodes (i.e., pitch) of 0.4 mm and 0.2/0.25 mm respectively. To assess the spatial properties of the signals, we used the average correlation between electrodes as a function of the pitch. In agreement with prior studies, we find a strong frequency dependence in the spatial scale of correlation. By applying independent component analysis (ICA), we find that the spatial pattern of correlation is largely due to contributions from multiple spatially extended, time-locked sources present at any given time. Our analysis indicates the presence of spatially structured activity down to the sub-millimeter spatial scale in ECoG despite the effects of volume conduction, justifying the use of dense micro-ECoG grids.
Journal Article
Stimulus Driven Single Unit Activity From Micro-Electrocorticography
2020
High-fidelity measurements of neural activity can enable advancements in our understanding of the neural basis of complex behaviors such as speech, audition, and language, and are critical for developing neural prostheses that address impairments to these abilities due to disease or injury. We develop a novel high resolution, thin-film micro-electrocorticography (micro-ECoG) array that enables high-fidelity surface measurements of neural activity from songbirds, a well-established animal model for studying speech behavior. With this device, we provide the first demonstration of sensory-evoked modulation of surface-recorded single unit responses. We establish that single unit activity is consistently sensed from micro-ECoG electrodes over the surface of sensorimotor nucleus HVC (used as a proper name) in anesthetized European starlings, and validate responses with correlated firing in single units recorded simultaneously at surface and depth. The results establish a platform for high-fidelity recording from the surface of subcortical structures that will accelerate neurophysiological studies, and development of novel electrode arrays and neural prostheses.
Journal Article
Strong Geometrical Effects in Submillimeter Selective Area Growth and Light Extraction of GaN Light Emitting Diodes on Sapphire
by
Jungjohann, Katherine L.
,
Dayeh, Shadi A.
,
Chen, Renjie
in
142/126
,
639/166/987
,
639/301/1005/1007
2015
Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. We report here detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates and utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO
2
. We show that the mask opening diameter leads to as much as 4 times increase in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.
Journal Article
Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state estimation
by
Ganji, Mehran
,
Carter, Bob S.
,
Dayeh, Shadi A.
in
Accuracy
,
Animal cognition
,
Artificial intelligence
2018
Electrocorticography (ECoG), electrophysiological recording from the pial surface of the brain, is a critical measurement technique for clinical neurophysiology, basic neurophysiology studies, and demonstrates great promise for the development of neural prosthetic devices for assistive applications and the treatment of neurological disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the observation of neural dynamics from the cortical surface at the micrometer scale. While these technical capabilities may be enabling, the extent to which finer spatial scale recording enhances functionally relevant neural state inference is unclear.
We examine this question by employing a high-density and low impedance 400 μm pitch microECoG (μECoG) grid to record neural activity from the human cortical surface during cognitive tasks. By applying machine learning techniques to classify task conditions from the envelope of high-frequency band (70–170Hz) neural activity collected from two study participants, we demonstrate that higher density grids can lead to more accurate binary task condition classification. When controlling for grid area and selecting task informative sub-regions of the complete grid, we observed a consistent increase in mean classification accuracy with higher grid density; in particular, 400 μm pitch grids outperforming spatially sub-sampled lower density grids up to 23%. We also introduce a modeling framework to provide intuition for how spatial properties of measurements affect the performance gap between high and low density grids. To our knowledge, this work is the first quantitative demonstration of human sub-millimeter pitch cortical surface recording yielding higher-fidelity state estimation relative to devices at the millimeter-scale, motivating the development and testing of μECoG for basic and clinical neurophysiology as well as towards the realization of high-performance neural prostheses.
[Display omitted]
Journal Article
Syllable processing is organized in discrete subregions of the human superior temporal gyrus
2024
Modular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 μm pitch demonstrated roughly circular domains approximately 1.7 mm in diameter, with sharp boundaries observed in 128 channel linear arrays at 50 μm pitch, possibly consistent with a columnar organization. Peak latencies to syllables in different modules were bimodally distributed centered at 252 and 386 ms. Adjacent modules were sharply delineated from each other by their distinct time courses and stimulus selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.
Journal Article