Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "De Tomasi, Ferdinando"
Sort by:
EARLINET correlative measurements for CALIPSO: First intercomparison results
A strategy for European Aerosol Research Lidar Network (EARLINET) correlative measurements for Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) has been developed. These EARLINET correlative measurements started in June 2006 and are still in progress. Up to now, more than 4500 correlative files are available in the EARLINET database. Independent extinction and backscatter measurements carried out at high‐performance EARLINET stations have been used for a quantitative comparison with CALIPSO level 1 data. Results demonstrate the good performance of CALIPSO and the absence of evident biases in the CALIPSO raw signals. The agreement is also good for the distribution of the differences for the attenuated backscatter at 532 nm ((CALIPSO‐EARLINET)/EARLINET (%)), calculated in the 1–10 km altitude range, with a mean relative difference of 4.6%, a standard deviation of 50%, and a median value of 0.6%. A major Saharan dust outbreak lasting from 26 to 31 May 2008 has been used as a case study for showing first results in terms of comparison with CALIPSO level 2 data. A statistical analysis of dust properties, in terms of intensive optical properties (lidar ratios, Ångström exponents, and color ratios), has been performed for this observational period. We obtained typical lidar ratios of the dust event of 49 ± 10 sr and 56 ± 7 sr at 355 and 532 nm, respectively. The extinction‐related and backscatter‐related Ångström exponents were on the order of 0.15–0.17, which corresponds to respective color ratios of 0.91–0.95. This dust event has been used to show the methodology used for the investigation of spatial and temporal representativeness of measurements with polar‐orbiting satellites.
Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET
This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode.The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.
The Growth of the Planetary Boundary Layer at a Coastal Site: a Case Study
A lidar system is used to determine the diurnal evolution of the planetary boundary layer (PBL) height on a summer day characterized by anticyclonic conditions. The site is located some 15 km distant from the sea, on a peninsula in south-east Italy. Contrary to expectations, the PBL height, after an initial growth consequent to sunrise, ceases to increase about 2 h before noon and then decreases and stabilizes in the afternoon. An interpretation of such anomalous behaviour is provided in terms of trajectories of air parcels towards the lidar site, which are influenced by the sea breeze, leading to a transition from a continental boundary layer to a coastal internal boundary layer. The results are analyzed using mesoscale numerical model simulations and a simple model that allows for a more direct interpretation of experimental results.
Multiwavelengths lidar to detect atmospheric aerosol properties
The peculiarity of lidar systems is to provide profiles of optical properties of the atmosphere. The use of specific wavelengths and the selection of different kinds of backscattering (elastic, Raman, polarisation selective) permit to obtain information about suspended particles (aerosols). The authors show here a case study in which particle signals are detected from the boundary layer up to the stratosphere. Information on the size distribution of the different layers can be obtained, using a graphical method relying on the spectral dependence of aerosol extinction. The authors apply this method, for the first time to their knowledge, to stratospheric aerosol.
EARLINET instrument intercomparison campaigns: overview on strategy and results
This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2  ×  10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.