Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "De Barro, Paul J."
Sort by:
Pest Risk Maps for Invasive Alien Species: A Roadmap for Improvement
Pest risk maps are powerful visual communication tools to describe where invasive alien species might arrive, establish, spread, or cause harmful impacts. These maps inform strategic and tactical pest management decisions, such as potential restrictions on international trade or the design of pest surveys and domestic quarantines. Diverse methods are available to create pest risk maps, and can potentially yield different depictions of risk for the same species. Inherent uncertainties about the biology of the invader, future climate conditions, and species interactions further complicate map interpretation. If multiple maps are available, risk managers must choose how to incorporate the various representations of risk into their decisionmaking process, and may make significant errors if they misunderstand what each map portrays. This article describes the need for pest risk maps, compares pest risk mapping methods, and recommends future research to improve such important decision-support tools.
Will the Real Bemisia tabaci Please Stand Up?
Since Panayiotis Gennadius first identified the whitefly, Aleyrodes tabaci in 1889, there have been numerous revisions of the taxonomy of what has since become one of the world's most damaging insect pests. Most of the taxonomic revisions have been based on synonymising different species under the name Bemisia tabaci . It is now considered that there is sufficient biological, behavioural and molecular genetic data to support its being a cryptic species complex composed of at least 34 morphologically indistinguishable species. The first step in revising the taxonomy of this complex involves matching the A. tabaci collected in 1889 to one of the members of the species complex using molecular genetic data. To do this we extracted and then amplified a 496 bp fragment from the 3′ end of the mitochondrial DNA cytochrome oxidase one (mtCOI) gene belonging to a single whitefly taken from Gennadius' original 1889 collection. The sequence identity of this 123 year-old specimen enabled unambiguous assignment to a single haplotype known from 13 Mediterranean locations across Greece and Tunisia. This enabled us to unambiguously assign the Gennadius A. tabaci to the member of the B. tabaci cryptic species complex known as Mediterranean or as it is commonly, but erroneously referred to, as the ‘Q-biotype’. Mediterranean is therefore the real B. tabaci . This study demonstrates the importance of matching museum syntypes with known species to assist in the delimitation of cryptic species based on the organism's biology and molecular genetic data. This study is the first step towards the reclassification of B. tabaci which is central to an improved understanding how best to manage this globally important agricultural and horticultural insect pest complex.
Global threat to agriculture from invasive species
Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread.
Inactivation of Wolbachia Reveals Its Biological Roles in Whitefly Host
The whitefly Bemisia tabaci is cryptic species complex composed of numerous species. Individual species from the complex harbor a diversity of bacterial endosymbionts including Wolbachia. However, while Wolbachia is known to have a number of different roles, its role in B. tabaci is unclear. Here, the antibiotic rifampicin is used to selectively eliminate Wolbachia from B. tabaci so as to enable its roles in whitefly development and reproduction to be explored. The indirect effects of Wolbachia elimination on the biology of Encarsia bimaculata, a dominant parasitoid of B. tabaci in South China, were also investigated. qRT-PCR and FISH were used to show that after 48 h exposure to 1.0 mg/ml rifampicin, Wolbachia was completely inactivated from B. tabaci Mediterranean (MED) without any significant impact on either the primary symbiont, Portiera aleyrodidarum or any of the other secondary endosymbionts present. For B. tabaci MED, Wolbachia was shown to be associated with decreased juvenile development time, increased likelihood that nymphs completed development, increased adult life span and increased percentage of female progeny. Inactivation was associated with a significant decrease in the body size of the 4(th) instar which leads us to speculate as to whether Wolbachia may have a nutrient supplementation role. The reduction in nymph body size has consequences for its parasitoid, E. bimaculata. The elimination of Wolbachia lead to a marked increase in the proportion of parasitoid eggs that completed their development, but the reduced size of the whitefly host was also associated with a significant reduction in the size of the emerging parasitoid adult and this was in turn associated with a marked reduction in adult parasitoid longevity. Wolbachia increases the fitness of the whitefly host and provides some protection against parasitization. These observations add to our understanding of the roles played by bacterial endosymbionts.
Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases
Projected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990’s there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.
Evidence for Horizontal Transmission of Secondary Endosymbionts in the Bemisia tabaci Cryptic Species Complex
Bemisia tabaci (Hemiptera: Aleyrodidae) is a globally distributed pest composed of at least 34 morphologically indistinguishable cryptic species. At least seven species of endosymbiont have been found infecting some or all members of the complex. The origin(s) of the associations between specific endosymbionts and their whitefly hosts is unknown. Infection is normally vertical, but horizontal transmission does occur and is one way for new infections to be introduced into individuals. The relationships between the different members of the cryptic species complex and the endosymbionts have not been well explored. In this study, the phylogenies of different cryptic species of the host with those of their endosymbionts were compared. Of particular interest was whether there was evidence for both coevolution and horizontal transmission. Congruence was observed for the primary endosymbiont, Portiera aleyrodidarum, and partial incongruence in the case of two secondary endosymbionts, Arsenophonus and Cardinium and incongruence for a third, Wolbachia. The patterns observed for the primary endosymbiont supported cospeciation with the host while the patterns for the secondary endosymbionts, and especially Wolbachia showed evidence of host shifts and extinctions through horizontal transmission rather than cospeciation. Of particular note is the observation of several very recent host shift events in China between exotic invader and indigenous members of the complex. These shifts were from indigenous members of the complex to the invader as well as from the invader to indigenous relatives.
From local to central
One of the key determinants of success in managing natural resources is “institutional fit,” i.e., how well the suite of required actions collectively match the scale of the environmental problem. The effective management of pest and pathogen threats to plants is a natural resource problem of particular economic, social, and environmental importance. Responses to incursions are managed by a network of decision makers and managers acting at different spatial and temporal scales. We applied novel network theoretical methods to assess the propensity of growers, local industry, local state government, and state and national government head offices to foster either within- or across-scale coordination during the successful 2001 Australian response to the outbreak of the fungal pathogen black sigatoka (Mycosphaerella fijiensis). We also reconstructed the response network to proxy what that network would look like today under the Australian government’s revised response system. We illustrate a structural move in the plant biosecurity response system from one that was locally driven to the current top-down system, in which the national government leads coordination of a highly partitioned engagement process. For biological incursions that spread widely across regions, nationally rather than locally managed responses may improve coordination of diverse tasks. However, in dealing with such challenges of institutional fit, local engagement will always be critical in deploying flexible and adaptive local responses based on a national system. The methods we propose detect where and how network structures foster cross-scale interactions, which will contribute to stronger empirical studies of cross-scale environmental governance.
Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia
Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.
The Initial Dispersal and Spread of an Intentional Invader at Three Spatial Scales
The way an invasion progresses through space is a theme of interest common to invasion ecology and biological pest control. Models and mark-release studies of arthropods have been used extensively to extend and inform invasion processes of establishment and spread. However, the extremely common single-scale approach of monitoring initial spread leads to misinterpretation of rate and mode. Using the intentional release of a novel biological control agent (a parasitic hymenoptera, Eretmocerus hayati Zolnerowich & Rose (Hymenoptera: Aphelinidae), we studied its initial dispersal and spread at three different spatial scales, the local scale (tens of metres), field scale (hundreds of metres) and landscape scale (kilometres) around the release point. We fit models to each observed spread pattern at each spatial scale. We show that E. hayati exhibits stratified dispersal; moving further, faster and by a different mechanism than would have been concluded with a single local-scale post-release sampling design. In fact, interpretation of each scale independent of other scales gave three different models of dispersal, and three different impressions of the dominant dispersal mechanisms. Our findings demonstrate that using a single-scale approach may lead to quite erroneous conclusions, hence the necessity of using a multiple-scale hierarchical sampling design for inferring spread and the dominant dispersal mechanism of either human intended or unintended invasions.
Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity
The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum.