Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "De Boer, Marijn"
Sort by:
Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers
Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases, similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.
Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ
Bacterial ABC importer GlnPQ has two fused substrate-binding domains (SBDs). Single-molecule FRET is now used to probe the conformational dynamics of the SBDs, which are shown to directly influence transport rates. The conformational dynamics in ABC transporters is largely elusive. The ABC importer GlnPQ from Lactococcus lactis has different covalently linked substrate-binding domains (SBDs), thus making it an excellent model system to elucidate the dynamics and role of the SBDs in transport. We demonstrate by single-molecule spectroscopy that the two SBDs intrinsically transit from open to closed ligand-free conformation, and the proteins capture their amino acid ligands via an induced-fit mechanism. High-affinity ligands elicit transitions without changing the closed-state lifetime, whereas low-affinity ligands dramatically shorten it. We show that SBDs in the closed state compete for docking onto the translocator, but remarkably the effect is strongest without ligand. We find that the rate-determining steps depend on the SBD and the amino acid transported. We conclude that the lifetime of the closed conformation controls both SBD docking to the translocator and substrate release.
Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins
Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology. An international blind study confirms that smFRET measurements on dynamic proteins are highly reproducible across instruments, analysis procedures and timescales, further highlighting the promise of smFRET for dynamic structural biology.
Structural dynamics in the evolution of a bilobed protein scaffold
Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an asyet- unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.
Maximum likelihood analysis of non-equilibrium solution-based single-molecule FRET data
Measuring the F\"{o}rster resonance energy transfer (FRET) efficiency of freely diffusing single molecules provides information about the sampled conformational states of the molecules. Under equilibrium conditions, the distribution of the conformational states is independent of time, whereas it can vary over time under non-equilibrium conditions. In this work, we consider the problem of parameter inference on non-equilibrium solution-based single-molecule FRET data. With a non-equilibrium model for the conformational dynamics and a model for the conformation-dependent FRET efficiency distribution, the likelihood function could be constructed. The model parameters, such as the rate constants of the non-equilibrium conformational dynamics model and the average FRET efficiencies of the different conformational states, have been estimated from the data by maximizing the appropriate likelihood function via the Expectation-Maximization algorithm. We illustrate the likelihood method for a few simple non-equilibrium models and validated the method by simulations. The likelihood method could be applied to study protein folding, macromolecular complex formation, protein conformational dynamics and other non-equilibrium processes at the single-molecule level and in solution.
The relation between intrinsic protein conformational changes and ligand binding
Structural changes in proteins allow them to exist in several conformations. Non-covalent interactions with ligands drive the structural changes, thereby allowing the protein to perform its biological function. Recent findings suggest that many proteins are always in an equilibrium of different conformations and that each of these conformations can be formed by both the ligand-free and ligand-bound protein. By using classical statistical mechanics, we derived the equilibrium probabilities of forming a conformation with and without ligand. We found, under certain conditions, that increasing the probability of forming a conformation by the ligand-free protein also increases the probability of forming the same conformation when the protein has a ligand bound. Further, we found that changes in the conformational equilibrium of the ligand-free protein can increase or decrease the affinity for the ligand.
Stability of ligand-induced protein conformation influences affinity in maltose-binding protein
ABSTRACT Our understanding of what determines ligand affinity of proteins is poor, even with high-resolution structures available. Both the non-covalent ligand-protein interactions and the relative free energies of available conformations contribute to the affinity of a protein for a ligand. Distant, non-binding site residues can influence the ligand affinity by altering the free energy difference between a ligand-free and ligand-bound conformation. Our hypothesis is that when different ligands induce distinct ligand-bound conformations, it should be possible to tweak their affinities by changing the free energies of the available conformations. We tested this idea for the maltose-binding protein (MPB) from Escherichia coli. We used singlemolecule Förster resonance energy transfer (smFRET) to distinguish several unique ligand-bound conformations of MBP. We engineered mutations, distant from the binding site, to affect the stabilities of different ligand-bound conformations. We show that ligand affinity can indeed be altered in a conformation-dependent manner. Our studies provide a framework for the tuning of ligand affinity, apart from modifying binding site residues. Competing Interest Statement The authors have declared no competing interest.
Single-molecule studies of conformational states and dynamics in the ABC importer OpuA
Abstract The current model of active transport via ABC importers is mostly based on structural, biochemical and genetic data. We here establish single-molecule Förster-resonance energy transfer (smFRET) assays to monitor the conformational states and heterogeneity of the type-I ABC importer OpuA from Lactococcus lactis. We present data probing both intradomain distances that elucidate conformational changes within the substrate-binding domain (SBD) OpuAC, and interdomain distances between SBDs or transmembrane domains. Using the methodology, we studied ligand-binding mechanisms as well as ATP and glycine betaine dependences of conformational changes. Our study expands the scope of smFRET investigations towards a class of so far unstudied ABC importers, and paves the way for a full understanding of their transport cycle in the future. Competing Interest Statement The authors have declared no competing interest.
Single-molecule observation of ligand binding and conformational changes in FeuA
The specific binding of ligands by proteins and the coupling of this process to conformational changes are fundamental to protein function. We designed a fluorescence-based single-molecule assay and data analysis procedure that allows the simultaneous real-time observation of ligand binding and conformational changes in FeuA. The substrate-binding protein FeuA binds the ligand ferri-bacillibactin and delivers it to the ABC importer FeuBC, which is involved in iron uptake in bacteria. The conformational dynamics of FeuA was assessed via Förster resonance energy transfer (FRET), whereas the presence of the ligand was probed by fluorophore quenching. We reveal that ligand binding shifts the conformational equilibrium of FeuA from an open to a closed conformation. Ligand binding occurs via an induced-fit mechanism, i.e., the ligand binds to the open state and subsequently triggers a rapid closing of the protein. However, FeuA also rarely samples the closed conformation without the involvement of the ligand. This shows that ligand interactions are not required for conformational changes in FeuA. However, ligand interactions accelerate the conformational change 10000-fold and temporally stabilize the formed conformation 250-fold.
Triggering closure of a sialic acid TRAP transporter substrate binding protein through binding of natural or artificial substrates
Abstract The pathogens Vibrio cholerae and Haemophilus influenzae use tripartite ATP-independent periplasmic transporters (TRAPs) to scavenge sialic acid from host tissues. They use it as a nutrient or to evade the innate immune system by sialylating surface lipopolysaccharides. An essential component of TRAP transporters is a periplasmic substrate binding protein (SBP). Without substrate, the SBP has been proposed to rest in an open-state, which is not recognised by the transporter. Substrate binding induces a conformational change of the SBP and it is thought that this closed state is recognised by the transporter, triggering substrate translocation. Here we use real time single molecule FRET experiments and crystallography to investigate the open- to closed-state transition of VcSiaP, the SBP of the sialic acid TRAP transporter from V. cholerae. We show that the conformational switching of VcSiaP is strictly substrate induced, confirming an important aspect of the proposed transport mechanism. Two new crystal structures of VcSiaP provide insights into the closing mechanism. While the first structure contains the natural ligand, sialic acid, the second structure contains an artificial peptide in the sialic acid binding site. Together, the two structures suggest that the ligand itself stabilises the closed state and that SBP closure is triggered by physically bridging the gap between the two lobes of the SBP. Finally, we demonstrate that the affinity for the artificial peptide substrate can be substantially increased by varying its amino acid sequence and by this, serve as a starting point for the development of peptide-based inhibitors of TRAP transporters. Competing Interest Statement The authors have declared no competing interest. * Abbreviations SBP Substrate binding protein TRAP tripartite ATP-independent periplasmic * Glossary TRAP transporters Tripartite ATP-independent periplasmic transporters SBP Substrate binding protein ABC transporter ATP binding cassette transporter