Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"De Decker, Mark N."
Sort by:
Use of a sliding plate rheometer to measure the first normal stress difference at high shear rates
by
Xu, Junke
,
De Decker, Mark N.
,
Dealy, John M.
in
Applied sciences
,
Cross-disciplinary physics: materials science; rheology
,
Elastomers
2007
The use of a sliding plate rheometer (SPR) to determine the first normal stress difference of molten polymers and elastomers at high shear rates is demonstrated. The simple shear flow in this instrument is not subject to the flow instabilities that limit the use of rotational rheometers to shear rates often below 1 s−1. However, issues of secondary flow and wall slip must be addressed to obtain reliable data using an SPR. A highly entangled, monodisperse polybutadiene and a commercial polystyrene were the polymers studied. The inclusion of the polystyrene made it possible to compare data with those obtained by Lodge using a stressmeter, which is an instrument based on the measurement of the hole pressure. The data from the two instruments are in good agreement and are also close to the predictions of an empirical equation of Laun based on the storage and loss moduli.
Journal Article
Thermodynamic Stability of Wild-Type and Mutant p53 Core Domain
1997
Some 50% of human cancers are associated with mutations in the core domain of the tumor suppressor p53. Many mutations are thought just to destabilize the protein. To assess this and the possibility of rescue, we have set up a system to analyze the stability of the core domain and its mutants. The use of differential scanning calorimetry or spectroscopy to measure its melting temperature leads to irreversible denaturation and aggregation and so is useful as only a qualitative guide to stability. There are excellent two-state denaturation curves on the addition of urea that may be analyzed quantitatively. One Zn2+ion remains tightly bound in the holo-form of p53 throughout the denaturation curve. The stability of wild type is 6.0 kcal (1 kcal = 4.18 kJ)/mol at 25 degrees C and 9.8 kcal/mol at 10 degrees C. The oncogenic mutants R175H, C242S, R248Q, R249S, and R273H are destabilized by 3.0, 2.9, 1.9, and 0.4 kcal/mol, respectively. Under certain denaturing conditions, the wild-type domain forms an aggregate that is relatively highly fluorescent at 340 nm on excitation at 280 nm. The destabilized mutants give this fluorescence under milder denaturation conditions.
Journal Article
Research Infrastructures offer capacity to address scientific questions never attempted before: Are all taxa equal?
by
Molodtsova, Tina
,
Gittenberger, Arjan
,
Marshall, Bruce
in
Biodiversity
,
Biogeography
,
Computer applications
2018
Research Infrastructures (RIs) are facilities, resources and services used by the scientific community to conduct research and foster innovation. LifeWatch ERIC has developed various virtual research environments, which include many virtual laboratories (vLabs) offering high computational capacity and comprehensive collaborative platforms that supporting the needs of digital biodiversity science. Over its 250 years of history, the taxonomic research community has developed a system for describing, classifying and naming taxa across multiple levels. For the marine biota, taxonomic information is organized and made publicly available through the World Register of Marine Species (WoRMS) that records more than 250,000 described valid species. Although scientists tend to assign an equal status (in terms of contribution to overall diversity) to each taxon used in taxonomy, biogeography, ecology and biodiversity, the question “are all taxa equal?” has never been tested at a global scale. We present evidence that this question can be addressed by applying relatedness indices (Taxonomic Distinctness) over the entire WoRMS metazoan tree. The RvLab, developed by the LifeWatchGreece RI, operating on a high-performance computer cluster, has been used to meet the high computational demands required for such an analysis at a global scale.
Journal Article