Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
108
result(s) for
"De Filippis, Francesca"
Sort by:
Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome
2020
Lactic acid bacteria (LAB) are fundamental in the production of fermented foods and several strains are regarded as probiotics. Large quantities of live LAB are consumed within fermented foods, but it is not yet known to what extent the LAB we ingest become members of the gut microbiome. By analysis of 9445 metagenomes from human samples, we demonstrate that the prevalence and abundance of LAB species in stool samples is generally low and linked to age, lifestyle, and geography, with
Streptococcus thermophilus
and
Lactococcus lactis
being most prevalent. Moreover, we identify genome-based differences between food and gut microbes by considering 666 metagenome-assembled genomes (MAGs) newly reconstructed from fermented food microbiomes along with 154,723 human MAGs and 193,078 reference genomes. Our large-scale genome-wide analysis demonstrates that closely related LAB strains occur in both food and gut environments and provides unprecedented evidence that fermented foods can be indeed regarded as a possible source of LAB for the gut microbiome.
Here, Pasolli et al. perform a large-scale genome-wide comparative analysis of publicly available and newly sequenced food and human metagenomes to investigate the prevalence and diversity of lactic acid bacteria (LAB), indicating food as a major source of LAB species in the human gut.
Journal Article
Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance
2021
Understanding the functional potential of the gut microbiome is of primary importance for the design of innovative strategies for allergy treatment and prevention. Here we report the gut microbiome features of 90 children affected by food (FA) or respiratory (RA) allergies and 30 age-matched, healthy controls (CT). We identify specific microbial signatures in the gut microbiome of allergic children, such as higher abundance of
Ruminococcus gnavus
and
Faecalibacterium prausnitzii
, and a depletion of
Bifidobacterium longum
,
Bacteroides dorei
,
B. vulgatu
s and fiber-degrading taxa. The metagenome of allergic children shows a pro-inflammatory potential, with an enrichment of genes involved in the production of bacterial lipo-polysaccharides and urease. We demonstrate that specific gut microbiome signatures at baseline can be predictable of immune tolerance acquisition. Finally, a strain-level selection occurring in the gut microbiome of allergic subjects is identified.
R. gnavus
strains enriched in FA and RA showed lower ability to degrade fiber, and genes involved in the production of a pro-inflammatory polysaccharide. We demonstrate that a gut microbiome dysbiosis occurs in allergic children, with
R. gnavus
emerging as a main player in pediatric allergy. These findings may open new strategies in the development of innovative preventive and therapeutic approaches. Trial: NCT04750980.
Here, the authors profile the taxonomic composition and genetic potential of the gut microbiome of children with food or respiratory allergies and find that the gut metagenome of these patients is characterized by higher proinflammatory potential and reduced capacity of degrading complex polysaccharides, with
Ruminococcus gnavus
playing a central role.
Journal Article
Fermented foods, their microbiome and its potential in boosting human health
by
O'Sullivan, Orla
,
Cotter, Paul D.
,
De Filippis, Francesca
in
Associated species
,
Bacteria
,
Biosynthesis
2024
Fermented foods (FFs) are part of the cultural heritage of several populations, and their production dates back 8000 years. Over the last ~150 years, the microbial consortia of many of the most widespread FFs have been characterised, leading in some instances to the standardisation of their production. Nevertheless, limited knowledge exists about the microbial communities of local and traditional FFs and their possible effects on human health. Recent findings suggest they might be a valuable source of novel probiotic strains, enriched in nutrients and highly sustainable for the environment. Despite the increasing number of observational studies and randomised controlled trials, it still remains unclear whether and how regular FF consumption is linked with health outcomes and enrichment of the gut microbiome in health‐associated species. This review aims to sum up the knowledge about traditional FFs and their associated microbiomes, outlining the role of fermentation with respect to boosting nutritional profiles and attempting to establish a link between FF consumption and health‐beneficial outcomes. Mechanism for γ‐PGA electrofermentation (left); charge output and γ‐PGA production in electrofermentation (center, top); SEM of γ‐PGA‐containing EPS on carbon fiber in electrofermentation and conventional ferementation (center, bottom); (1H)‐NMR of γ‐PGA‐enriched EPS in electrofermentation (right).
Journal Article
The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health
by
De Filippis, Francesca
,
Ercolini, Danilo
,
Pasolli, Edoardo
in
Analysis
,
Bacteria
,
Clinical trials
2020
ABSTRACT
Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.
Lactic acid bacteria are widespread in food and many strains have a well-established role as probiotics; however, their occurrence, genome-wide diversity and role in the human gut and gut health is still understudied.
Journal Article
Diet influences the functions of the human intestinal microbiome
by
De Angelis, Maria
,
Pellegrini, Nicoletta
,
Cavallo, Noemi
in
631/326/2565/2134
,
631/326/41/2142
,
82/81
2020
Gut microbes programme their metabolism to suit intestinal conditions and convert dietary components into a panel of small molecules that ultimately affect host physiology. To unveil what is behind the effects of key dietary components on microbial functions and the way they modulate host–microbe interaction, we used for the first time a multi-omic approach that goes behind the mere gut phylogenetic composition and provides an overall picture of the functional repertoire in 27 fecal samples from omnivorous, vegan and vegetarian volunteers. Based on our data, vegan and vegetarian diets were associated to the highest abundance of microbial genes/proteins responsible for cell motility, carbohydrate- and protein-hydrolyzing enzymes, transport systems and the synthesis of essential amino acids and vitamins. A positive correlation was observed when intake of fiber and the relative fecal abundance of flagellin were compared. Microbial cells and flagellin extracted from fecal samples of 61 healthy donors modulated the viability of the human (HT29) colon carcinoma cells and the host response through the stimulation of the expression of Toll-like receptor 5, lectin RegIIIα and three interleukins (IL-8, IL-22 and IL-23). Our findings concretize a further and relevant milestone on how the diet may prevent/mitigate disease risk.
Journal Article
Combined Effect of Plasma-Activated Water, Edible Coating, and Active Packaging on Cherry Tomato Shelf-Life: Kinetics and Microbiome Approach
by
Volpe, Stefania
,
Colonna, Francesca
,
Torrieri, Elena
in
Antimicrobial resistance
,
antioxidant active films
,
Antioxidants
2026
Cherry tomatoes are highly appreciated for their nutritional value but remain highly perishable due to rapid respiration and senescence. This study evaluated a multi-hurdle strategy combining plasma-activated water (PAW), sodium caseinate-based edible coating, and antioxidant active packaging to preserve minimally processed (MP) cherry tomatoes stored at 1 °C, 4 °C, and 8 °C for 15 days. Quality evolution was monitored through physical, chemical, nutritional, and microbiological parameters and described using pseudo-zero- and first-order kinetic models, with temperature dependence expressed by the Arrhenius equation. The combined treatment (prototype) slowed the degradation rates of pH, titratable acidity, total polyphenols, and antioxidant capacity, as reflected by consistently lower kinetic rate constants across all temperatures. Prototype samples showed better retention of polyphenols and antioxidant capacity, particularly at 1 °C and 4 °C, without detrimental effects on visual appearance. Metagenomic analysis revealed that the multi-hurdle treatment reshaped the microbial community, reducing the relative abundance of potentially problematic taxa such as Acinetobacter johnsonii and limiting the occurrence of antimicrobial resistance (AMR) genes at the end of storage. This study provides the first integrated assessment of PAW, edible coating, and antioxidant active packaging as a synergistic multi-hurdle strategy, demonstrating their combined ability to extend shelf life while modulating the microbiome and resistome of minimally processed cherry tomatoes.
Journal Article
Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake
2020
ObjectivesThis study aimed to explore the effects of an isocaloric Mediterranean diet (MD) intervention on metabolic health, gut microbiome and systemic metabolome in subjects with lifestyle risk factors for metabolic disease.DesignEighty-two healthy overweight and obese subjects with a habitually low intake of fruit and vegetables and a sedentary lifestyle participated in a parallel 8-week randomised controlled trial. Forty-three participants consumed an MD tailored to their habitual energy intakes (MedD), and 39 maintained their regular diets (ConD). Dietary adherence, metabolic parameters, gut microbiome and systemic metabolome were monitored over the study period.ResultsIncreased MD adherence in the MedD group successfully reprogrammed subjects’ intake of fibre and animal proteins. Compliance was confirmed by lowered levels of carnitine in plasma and urine. Significant reductions in plasma cholesterol (primary outcome) and faecal bile acids occurred in the MedD compared with the ConD group. Shotgun metagenomics showed gut microbiome changes that reflected individual MD adherence and increase in gene richness in participants who reduced systemic inflammation over the intervention. The MD intervention led to increased levels of the fibre-degrading Faecalibacterium prausnitzii and of genes for microbial carbohydrate degradation linked to butyrate metabolism. The dietary changes in the MedD group led to increased urinary urolithins, faecal bile acid degradation and insulin sensitivity that co-varied with specific microbial taxa.ConclusionSwitching subjects to an MD while maintaining their energy intake reduced their blood cholesterol and caused multiple changes in their microbiome and metabolome that are relevant in future strategies for the improvement of metabolic health.
Journal Article
Exploring the Sources of Bacterial Spoilers in Beefsteaks by Culture-Independent High-Throughput Sequencing
by
La Storia, Antonietta
,
Ercolini, Danilo
,
De Filippis, Francesca
in
Abundance
,
Analysis
,
Animals
2013
Microbial growth on meat to unacceptable levels contributes significantly to change meat structure, color and flavor and to cause meat spoilage. The types of microorganisms initially present in meat depend on several factors and multiple sources of contamination can be identified. The aims of this study were to evaluate the microbial diversity in beefsteaks before and after aerobic storage at 4°C and to investigate the sources of microbial contamination by examining the microbiota of carcasses wherefrom the steaks originated and of the processing environment where the beef was handled. Carcass, environmental (processing plant) and meat samples were analyzed by culture-independent high-throughput sequencing of 16S rRNA gene amplicons. The microbiota of carcass swabs was very complex, including more than 600 operational taxonomic units (OTUs) belonging to 15 different phyla. A significant association was found between beef microbiota and specific beef cuts (P<0.01) indicating that different cuts of the same carcass can influence the microbial contamination of beef. Despite the initially high complexity of the carcass microbiota, the steaks after aerobic storage at 4°C showed a dramatic decrease in microbial complexity. Pseudomonas sp. and Brochothrix thermosphacta were the main contaminants, and Acinetobacter, Psychrobacter and Enterobacteriaceae were also found. Comparing the relative abundance of OTUs in the different samples it was shown that abundant OTUs in beefsteaks after storage occurred in the corresponding carcass. However, the abundance of these same OTUs clearly increased in environmental samples taken in the processing plant suggesting that spoilage-associated microbial species originate from carcasses, they are carried to the processing environment where the meat is handled and there they become a resident microbiota. Such microbiota is then further spread on meat when it is handled and it represents the starting microbial association wherefrom the most efficiently growing microbial species take over during storage and can cause spoilage.
Journal Article
Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals
by
Ferrero, Giulio
,
Pardini, Barbara
,
Pasolli, Edoardo
in
Chronic illnesses
,
colonic microflora
,
Diet
2022
ObjectivesMicroRNA (miRNA) profiles have been evaluated in several biospecimens in relation to common diseases for which diet may have a considerable impact. We aimed at characterising how specific diets are associated with the miRNome in stool of vegans, vegetarians and omnivores and how this is reflected in the gut microbial composition, as this is still poorly explored.DesignWe performed small RNA and shotgun metagenomic sequencing in faecal samples and dietary recording from 120 healthy volunteers, equally distributed for the different diets and matched for sex and age.ResultsWe found 49 miRNAs differentially expressed among vegans, vegetarians and omnivores (adj. p <0.05) and confirmed trends of expression levels of such miRNAs in vegans and vegetarians compared with an independent cohort of 45 omnivores. Two miRNAs related to lipid metabolism, miR-636 and miR-4739, were inversely correlated to the non-omnivorous diet duration, independently of subject age. Seventeen miRNAs correlated (|rho|>0.22, adj. p <0.05) with the estimated intake of nutrients, particularly animal proteins, phosphorus and, interestingly, lipids. In omnivores, higher Prevotella and Roseburia and lower Bacteroides abundances than in vegans and vegetarians were observed. Lipid metabolism-related miR-425-3p and miR-638 expression levels were associated with increased abundances of microbial species, such as Roseburia sp. CAG 182 and Akkermansia muciniphila, specific of different diets. An integrated analysis identified 25 miRNAs, 25 taxa and 7 dietary nutrients that clearly discriminated (area under the receiver operating characteristic curve=0.89) the three diets.ConclusionStool miRNA profiles are associated with specific diets and support the role of lipids as a driver of epigenetic changes and host-microbial molecular interactions in the gut.
Journal Article
Exposure to environmental pollutants selects for xenobiotic-degrading functions in the human gut microbiome
2024
Environmental pollutants from different chemical families may reach the gut microbiome, where they can be metabolized and transformed. However, how our gut symbionts respond to the exposure to environmental pollution is still underexplored. In this observational, cohort study, we aim to investigate the influence of environmental pollution on the gut microbiome composition and potential activity by shotgun metagenomics. We select as a case study a population living in a highly polluted area in Campania region (Southern Italy), proposed as an ideal field for exposomic studies and we compare the fecal microbiome of 359 subjects living in areas with high, medium and low environmental pollution. We highlight changes in gut microbiome composition and functionality that were driven by pollution exposure. Subjects from highly polluted areas show higher blood concentrations of dioxin and heavy metals, as well as an increase in microbial genes related to degradation and/or resistance to these molecules. Here we demonstrate the dramatic effect that environmental xenobiotics have on gut microbial communities, shaping their composition and boosting the selection of strains with degrading capacity. The gut microbiome can be considered as a pivotal player in the environment-health interaction that may contribute to detoxifying toxic compounds and should be taken into account when developing risk assessment models. The study was registered at ClinicalTrials.gov with the identifier NCT05976126.
In this study, the authors employ metagenomics to explore the impact of environmental pollution on the human gut microbiome using samples from a cohort living in a very polluted area in Southern Italy, showing that pollutants degradation genes are more abundant in subjects with higher blood levels of those specific xenobiotics.
Journal Article