Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "De Rienzo, Assunta"
Sort by:
AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth
Activation of the PI3K/AKT pathway may contribute to tumorigenesis. AKT mediates survival signals that protect cells from apoptosis and, thus, is a potentially important therapeutic target. To determine the frequency of AKT activation in human ovarian cancer, we screened a tumor tissue microarray with a phospho-specific pan-AKT (Ser473) antibody, which revealed elevated staining in 21 of 31 (68%) ovarian carcinomas. Phospho-AKT staining was associated with that of phospho (active)-mTOR in 27 of 31 (87%) ovarian tumors, with 17 (55%) tumors showing elevated phospho-mTOR positivity. We tested the effects of AKT/mTOR activation on the therapeutic sensitivity of ovarian cancer cells. Pretreatment of SKOV3 cells, which exhibit constitutive AKT activity under low serum conditions, with the PI3K inhibitor LY294002 augmented cisplatin-induced apoptosis. In contrast, ovarian cancer cell lines OVCAR4 and OVCAR5, which have low basal levels of AKT activity, did not show increased cisplatin-induced apoptosis when pretreated with LY294002. In addition, inhibition of mTOR activity with rapamycin resulted in G1 arrest in SKOV3 cells, but not in OVCAR4 or OVCAR5 cells. Collectively, these findings indicate that active AKT and downstream mTOR represent potentially important therapeutic and/or chemopreventive targets in ovarian cancer.
Transcriptome sequencing of malignant pleural mesothelioma tumors
Cancers arise by the gradual accumulation of mutations in multiple genes. We now use shotgun pyrosequencing to characterize RNA mutations and expression levels unique to malignant pleural mesotheliomas (MPMs) and not present in control tissues. On average, 266 Mb of cDNA were sequenced from each of four MPMs, from a control pulmonary adenocarcinoma (ADCA), and from normal lung tissue. Previously observed differences in MPM RNA expression levels were confirmed. Point mutations were identified by using criteria that require the presence of the mutation in at least four reads and in both cDNA strands and the absence of the mutation from sequence databases, normal adjacent tissues, and other controls. In the four MPMs, 15 nonsynonymous mutations were discovered: 7 were point mutations, 3 were deletions, 4 were exclusively expressed as a consequence of imputed epigenetic silencing, and 1 was putatively expressed as a consequence of RNA editing. Notably, each MPM had a different mutation profile, and no mutated gene was previously implicated in MPM. Of the seven point mutations, three were observed in at least one tumor from 49 other MPM patients. The mutations were in genes that could be causally related to cancer and included XRCC6, PDZK1IP1, ACTR1A, and AVEN.
Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations
Raphael Bueno, Eric Stawiski, Somasekar Seshagiri and colleagues present a comprehensive genomic analysis of malignant pleural mesothelioma. They identify four distinct molecular subtypes using RNA-seq data and highlight recurrent somatic mutations, gene fusions and splicing alterations. We analyzed transcriptomes ( n = 211), whole exomes ( n = 99) and targeted exomes ( n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1 , NF2 , TP53 , SETD2 , DDX3X , ULK2 , RYR2 , CFAP45 , SETDB1 and DDX51 to be significantly mutated ( q -score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (∼2%; 4/216) and TRAF7 (∼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2 , BAP1 and SETD2 . Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.
Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer
Lung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers development of targeted therapies, was herein deconvoluted via single cell RNA sequencing in aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is conserved in both human and murine lung cancer. We previously reported a key role for the oncogene BMI-1 in adenocarcinomas. We therefore investigated the effects of in vivo PTC596 treatment, which affects BMI-1 activity, in our murine model. Post-treatment, MRI analysis showed decreased tumor size, while single cell transcriptomics concomitantly detected near complete ablation of the mutant-KRAS-associated subpopulation, signifying the presence of a pharmacologically targetable, tumor-associated subpopulation. Our findings therefore hold promise for the development of a targeted therapy for KRAS-mutant adenocarcinomas.Maroni, Bassal, Krishnan et al. characterise human non-small cell lung cancer (NSCLC) carrying Kras-mutations by single-cell RNA sequencing. They identify a tumour-specific population that is conserved in mice and responds to the drug, PTC596, which is currently in clinical trials and may offer a potential avenue for treating aggressive NSCLC expressing mutated Kras.
Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth
Malignant mesotheliomas (MMs) are very aggressive tumors that respond poorly to standard chemotherapeutic approaches. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in tumor aggressiveness, in part by mediating cell survival and reducing sensitivity to chemotherapy. Using antibodies recognizing the phosphorylated/activated form of AKT kinases, we observed elevated phospho-AKT staining in 17 of 26 (65%) human MM specimens. In addition, AKT phosphorylation was consistently observed in MMs arising in asbestos-treated mice and in MM cell xenografts. Consistent with reports implicating hepatocyte growth factor (HGF)/Met receptor signaling in MM, all 14 human and murine MM cell lines had HGF-inducible AKT activity. One of nine human MM cell lines had elevated AKT activity under serum-starvation conditions, which was associated with a homozygous deletion of PTEN , the first reported in MM. Treatment of this cell line with the mTOR inhibitor rapamycin resulted in growth arrest in G1 phase. Treatment of MM cells with the PI3K inhibitor LY294002 in combination with cisplatin had greater efficacy in inhibiting cell proliferation and inducing apoptosis than either agent alone. Collectively, these data indicate that MMs frequently express elevated AKT activity, which may be targeted pharmacologically to enhance chemotherapeutic efficacy. These findings also suggest that mouse models of MM may be useful for future preclinical studies of pharmaceuticals targeting the PI3K/AKT pathway.
Second Generation Sequencing of the Mesothelioma Tumor Genome
The current paradigm for elucidating the molecular etiology of cancers relies on the interrogation of small numbers of genes, which limits the scope of investigation. Emerging second-generation massively parallel DNA sequencing technologies have enabled more precise definition of the cancer genome on a global scale. We examined the genome of a human primary malignant pleural mesothelioma (MPM) tumor and matched normal tissue by using a combination of sequencing-by-synthesis and pyrosequencing methodologies to a 9.6X depth of coverage. Read density analysis uncovered significant aneuploidy and numerous rearrangements. Method-dependent informatics rules, which combined the results of different sequencing platforms, were developed to identify and validate candidate mutations of multiple types. Many more tumor-specific rearrangements than point mutations were uncovered at this depth of sequencing, resulting in novel, large-scale, inter- and intra-chromosomal deletions, inversions, and translocations. Nearly all candidate point mutations appeared to be previously unknown SNPs. Thirty tumor-specific fusions/translocations were independently validated with PCR and Sanger sequencing. Of these, 15 represented disrupted gene-encoding regions, including kinases, transcription factors, and growth factors. One large deletion in DPP10 resulted in altered transcription and expression of DPP10 transcripts in a set of 53 additional MPM tumors correlated with survival. Additionally, three point mutations were observed in the coding regions of NKX6-2, a transcription regulator, and NFRKB, a DNA-binding protein involved in modulating NFKB1. Several regions containing genes such as PCBD2 and DHFR, which are involved in growth factor signaling and nucleotide synthesis, respectively, were selectively amplified in the tumor. Second-generation sequencing uncovered all types of mutations in this MPM tumor, with DNA rearrangements representing the dominant type.
The Rocky Road from Preclinical Findings to Successful Targeted Therapy in Pleural Mesothelioma
Pleural mesothelioma (PM) is a rare and aggressive disease that arises from the mesothelial cells lining the pleural cavity. Approximately 80% of PM patients have a history of asbestos exposure. The long latency period of 20–40 years from the time of asbestos exposure to diagnosis, suggests that multiple somatic genetic alterations are required for the tumorigenesis of PM. The genomic landscape of PM has been characterized by inter- and intratumor heterogeneity associated with the impairment of tumor suppressor genes such as CDKN2A, NF2, and BAP1. Current systemic therapies have shown only limited efficacy, and none is approved for patients with relapsed PM. Advances in understanding of the molecular landscape of PM has facilitated several biomarker-driven clinical trials but so far, no predictive biomarkers for targeted therapies are in clinical use. Recent advances in the PM genetics have provided optimism for successful molecular strategies in the future. Here, we summarize the molecular mechanism underlying PM pathogenesis and review potential therapeutic targets.
SV40 infection induces telomerase activity in human mesothelial cells
Mesotheliomas are malignant tumors of the pleural and peritoneal membranes which are often associated with asbestos exposure and with Simian virus 40 (SV40) infection. Telomerase activity is repressed in somatic cells and tissues but is activated in immortal and malignant cells. We evaluated telomerase activity in seven primary malignant mesothelioma biopsies and matched lung specimens and 20 mesothelioma cell lines and eight corresponding primary tumor cultures. All the tumor biopsies, and nearly all primary cell mesothelioma cultures and cell lines were telomerase positive. The findings in cell lines paralleled those observed in primary cultures in cases where paired samples were available. Next, we found that SV40, a DNA tumor virus present in approximately 50% of mesothelioma biopsies in the USA, induced telomerase activity in primary human mesothelial cells, but not in primary fibroblasts. Telomerase activity became detectable as early as 72 h following wild-type (strain 776) SV40 infection, and a clear DNA ladder was detectable 1 week after infection. The amount of telomerase activity increased during passage in cell culture and appeared to parallel increases in the cellular amounts of the SV40 large T-antigen. Thus, SV40 infection leads to telomerase activity before the infected mesothelial cells become transformed and immortalized. SV40 infection of human fibroblasts did not cause detectable telomerase activity. We also determined that the SV40 small t-antigen (tag) plays an important role in inducing telomerase activity because this activity was undetectable or minimal in mesothelial cells infected and/or transformed by SV40 tag mutants. Asbestos alone did not induce telomerase activity, and asbestos did not influence telomerase activity in mesothelial cells infected with SV40. Induction of telomerase activity by SV40 may be related to the very high rate of mesothelial cell immortalization that is characteristically associated with SV40 infection of mesothelial cells.
Akt Regulates Drug-Induced Cell Death through Bcl-w Downregulation
Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.