Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "De Schepper Sebastiaan"
Sort by:
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment
While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less well understood. By dissecting border regions and combining single-cell RNA-sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny, and subsets displayed distinct self-renewal capacity following depletion and repopulation. Single-cell and fate-mapping analysis both suggested that there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host–macrophage interactions in both the healthy and diseased brain.Van Hove et al. reveal the diversity of macrophages at the brain’s border regions via single-cell analysis and fate-mapping. This also identified a microglial subset at the surface of the choroid plexus, in direct contact with cerebrospinal fluid.
Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung
Resident tissue macrophages (RTM) can fulfill various tasks during development, homeostasis, inflammation and repair. In the lung, non-alveolar RTM, called interstitial macrophages (IM), importantly contribute to tissue homeostasis but remain little characterized. Here we show, using single-cell RNA-sequencing (scRNA-seq), two phenotypically distinct subpopulations of long-lived monocyte-derived IM, i.e. CD206 + and CD206 − IM, as well as a discrete population of extravasating CD64 + CD16.2 + monocytes. CD206 + IM are peribronchial self-maintaining RTM that constitutively produce high levels of chemokines and immunosuppressive cytokines. Conversely, CD206 − IM preferentially populate the alveolar interstitium and exhibit features of antigen-presenting cells. In addition, our data support that CD64 + CD16.2 + monocytes arise from intravascular Ly-6C lo patrolling monocytes that enter the tissue at steady-state to become putative precursors of CD206 − IM. This study expands our knowledge about the complexity of lung IM and reveals an ontogenic pathway for one IM subset, an important step for elaborating future macrophage-targeted therapies. Functional diversity of tissue-resident macrophages and signals governing their ontogeny and turnover remain unknown for the majority of tissues. Here the authors describe two phenotypically and functionally distinct long-lived populations of lung interstitial macrophages and their putative blood-derived monocytic precursor.
Perivascular cells induce microglial phagocytic states andsynaptic engulfment via SPP1 in mouse models of Alzheimer’sdisease
Alzheimer’s disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-β oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell–cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.Microglia mediate aberrant synapse engulfment in Alzheimer’s disease (AD), but the underlying mechanisms are poorly understood. Here the authors show a perivascular cells-to-microglia crosstalk that induces microglia phagocytic state resulting in synapse engulfment in two mouse models of AD.
Neuron-macrophage crosstalk in the intestine: a “microglia” perspective
Intestinal macrophages are strategically located in different layers of the intestine, including the mucosa, submucosa and muscularis externa, where they perform complex tasks to maintain intestinal homeostasis. As the gastrointestinal tract is continuously challenged by foreign antigens, macrophage activation should be tightly controlled to prevent chronic inflammation and tissue damage. Unraveling the precise cellular and molecular mechanisms underlying the tissue-specific control of macrophage activation is crucial to get more insight into intestinal immune regulation. Two recent reports provide unanticipated evidence that the enteric nervous system (ENS) acts as a critical regulator of macrophage function in the myenteric plexus. Both studies clearly illustrate that enteric neurons reciprocally interact with intestinal macrophages and are actively involved in shaping their phenotype. This concept has striking parallels with the central nervous system (CNS), where neuronal signals maintain microglia, the resident macrophages of the CNS, in a quiescent, anti-inflammatory state. This inevitably evokes the perception that the ENS and CNS share mechanisms of neuroimmune interaction. In line, intestinal macrophages, both in the muscularis externa and (sub)mucosa, express high levels of CX3CR1, a feature that was once believed to be unique for microglia. CX3CR1 is the sole receptor of fractalkine (CX3CL1), a factor mainly produced by neurons in the CNS to facilitate neuron-microglia communication. The striking parallels between resident macrophages of the brain and intestine might provide a promising new line of thought to get more insight into cellular and molecular mechanisms controlling macrophage activation in the gut.
Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease
Alzheimer’s disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa , Grn and Ctsb in presence of amyloid-β oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell–cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD. Microglia mediate aberrant synapse engulfment in Alzheimer’s disease (AD), but the underlying mechanisms are poorly understood. Here the authors show a perivascular cells-to-microglia crosstalk that induces microglia phagocytic state resulting in synapse engulfment in two mouse models of AD.
Dedicated macrophages organize and maintain the enteric nervous system
Correct development and maturation of the enteric nervous system (ENS) is critical for survival 1 . At birth, the ENS is immature and requires considerable refinement to exert its functions in adulthood 2 . Here we demonstrate that resident macrophages of the muscularis externa (MMϕ) refine the ENS early in life by pruning synapses and phagocytosing enteric neurons. Depletion of MMϕ before weaning disrupts this process and results in abnormal intestinal transit. After weaning, MMϕ continue to interact closely with the ENS and acquire a neurosupportive phenotype. The latter is instructed by transforming growth factor-β produced by the ENS; depletion of the ENS and disruption of transforming growth factor-β signalling result in a decrease in neuron-associated MMϕ associated with loss of enteric neurons and altered intestinal transit. These findings introduce a new reciprocal cell–cell communication responsible for maintenance of the ENS and indicate that the ENS, similarly to the brain, is shaped and maintained by a dedicated population of resident macrophages that adapts its phenotype and transcriptome to the timely needs of the ENS niche. Resident macrophages of the muscularis externa refine the enteric nervous system (ENS) early in life by pruning synapses and phagocytosing enteric neurons, and later switch to a neuro-supportive function, indicating that the ENS is governed by a dedicated population of resident macrophages that adapt to the timely needs of the ENS.
Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons
ObjectivesVagus nerve stimulation (VNS), most likely via enteric neurons, prevents postoperative ileus (POI) by reducing activation of alpha7 nicotinic receptor (α7nAChR) positive muscularis macrophages (mMφ) and dampening surgery-induced intestinal inflammation. Here, we evaluated if 5-HT4 receptor (5-HT4R) agonist prucalopride can mimic this effect in mice and human.DesignUsing Ca2+ imaging, the effect of electrical field stimulation (EFS) and prucalopride was evaluated in situ on mMφ activation evoked by ATP in jejunal muscularis tissue. Next, preoperative and postoperative administration of prucalopride (1–5 mg/kg) was compared with that of preoperative VNS in a model of POI in wild-type and α7nAChR knockout mice. Finally, in a pilot study, patients undergoing a Whipple procedure were preoperatively treated with prucalopride (n=10), abdominal VNS (n=10) or sham/placebo (n=10) to evaluate the effect on intestinal inflammation and clinical recovery of POI.ResultsEFS reduced the ATP-induced Ca2+ response of mMφ, an effect that was dampened by neurotoxins tetrodotoxin and ω-conotoxin and mimicked by prucalopride. In vivo, prucalopride administered before, but not after abdominal surgery reduced intestinal inflammation and prevented POI in wild-type, but not in α7nAChR knockout mice. In humans, preoperative administration of prucalopride, but not of VNS, decreased Il6 and Il8 expression in the muscularis externa and improved clinical recovery.ConclusionEnteric neurons dampen mMφ activation, an effect mimicked by prucalopride. Preoperative, but not postoperative treatment with prucalopride prevents intestinal inflammation and shortens POI in both mice and human, indicating that preoperative administration of 5-HT4R agonists should be further evaluated as a treatment of POI.Trial registration number NCT02425774.
Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the gut, partly driven by defects in the innate immune system. Considering the central role of inflammasome signaling in innate immunity, we studied inflammasome components in IBD mucosa.MethodsExpression of genes encoding inflammasome sensor subunits was investigated in colonic mucosal biopsies from 2 cohorts of patients with IBD and controls.ResultsA significant upregulation (>2-fold change in expression, false discovery rate <0.05) of the PYHIN inflammasomes AIM2 and IFI16 in active IBD versus controls was found. Also IFI16 was significantly increased in inactive IBD versus controls. Moreover, responders to anti-tumor necrosis factor therapy showed decreased expression of these inflammasomes although IFI16 remained significantly increased in responders showing endoscopic healing versus controls. AIM2 was mainly expressed in epithelial cells, whereas IFI16 was expressed in both lymphocytes and epithelial cells. Functional activation of predominant AIM2/IFI16-mediated inflammasomes in active IBD colon was shown by the presence of the downstream effectors CASP1 and HMGB-1 in inflamed mucosa.ConclusionsOur results highlight the importance of PYHIN inflammasome signaling in IBD and also link anti-tumor necrosis factor responsiveness to inflammasome signaling. Together, this points to the potential value of the inflammasome pathway as a new therapeutic target for IBD treatment.
Microglia Detect Externalized Phosphatidylserine on Synapses for Elimination via TREM2 in Alzheimer's Disease Models
Genetic studies implicate phagocytosis pathways in microglia to be a major Alzheimer's disease (AD)-associated process. Microglia phagocytose synapses in AD mouse models, suggesting a role for microglia in region-specific synapse loss, a pathological hallmark of AD. However, whether specific synapses are targeted for elimination, and if so, how, remains to be elucidated. Here, we show that synapses externalize phosphatidylserine (PtdSer) upon challenge by β-amyloid oligomers, which are then selectively engulfed by microglia. Mechanistically, we find that Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) is critical for microglia to sense and preferentially engulf AD synapses. In brains of mice and humans, TREM2 dysfunction leads to exacerbation of apoptotic synapses. Our work altogether suggests a fundamental role for microglia as brain-resident macrophages to remove damaged synapses in AD. We provide mechanistic insight into how TREM2 variants associated with increased risk of developing AD may contribute to defective microglia-synapse function. Competing Interest Statement OJF is employed by AstraZeneca. The following patents have been granted or applied for: PCT/2015/010288, US14/988387 and EP14822330 (SH).
Astrocyte-derived MFG-E8 facilitates microglial synapse elimination in Alzheimer's disease mouse models
Region-specific synapse loss is an early pathological hallmark in Alzheimer's disease (AD). Emerging data in mice and humans highlight microglia, the brain-resident macrophages, as cellular mediators of synapse loss; however, the upstream modulators of microglia-synapse engulfment remain elusive. Here, we report a distinct subset of astrocytes, which are glial cells essential for maintaining synapse homeostasis, appearing in a region-specific manner with age and amyloidosis at onset of synapse loss. These astrocytes are distinguished by their peri-synaptic processes which are 'bulbous' in morphology, contain accumulated p62-immunoreactive bodies, and have reduced territorial domains, resulting in a decrease of astrocyte-synapse coverage. Using integrated and approaches, we show that astrocytes upregulate and secrete phagocytic modulator, milk fat globule-EGF factor 8 (MFG-E8), which is sufficient and necessary for promoting microglia-synapse engulfment in their local milieu. Finally, we show that knocking down specifically from astrocytes using a viral CRISPR-saCas9 system prevents microglia-synapse engulfment and ameliorates synapse loss in two independent amyloidosis mouse models of AD. Altogether, our findings highlight astrocyte-microglia crosstalk in determining synapse fate in amyloid models and nominate astrocytic MFGE8 as a potential target to ameliorate synapse loss during the earliest stages of AD.