Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"DeRenzo, Christopher"
Sort by:
Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors
2019
Immunotherapy with chimeric antigen receptor (CAR) T cells offers a promising method to improve cure rates and decrease morbidities for patients with cancer. In this regard, CD19-specific CAR T cell therapies have achieved dramatic objective responses for a high percent of patients with CD19-positive leukemia or lymphoma. Most patients with solid tumors however, have experienced transient or no benefit from CAR T cell therapies. Novel strategies are therefore needed to improve CAR T cell function for patients with solid tumors. One obstacle for the field is limited CAR T cell persistence after infusion into patients. In this review we highlight genetic engineering strategies to improve CAR T cell persistence for enhancing antitumor activity for patients with solid tumors.
Journal Article
Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma
2020
Refractory metastatic rhabdomyosarcoma is largely incurable. Here we analyze the response of a child with refractory bone marrow metastatic rhabdomyosarcoma to autologous HER2 CAR T cells. Three cycles of HER2 CAR T cells given after lymphodepleting chemotherapy induces remission which is consolidated with four more CAR T-cell infusions without lymphodepletion. Longitudinal immune-monitoring reveals remodeling of the T-cell receptor repertoire with immunodominant clones and serum autoantibodies reactive to oncogenic signaling pathway proteins. The disease relapses in the bone marrow at six months off-therapy. A second remission is achieved after one cycle of lymphodepletion and HER2 CAR T cells. Response consolidation with additional CAR T-cell infusions includes pembrolizumab to improve their efficacy. The patient described here is a participant in an ongoing phase I trial (NCT00902044; active, not recruiting), and is 20 months off T-cell infusions with no detectable disease at the time of this report.
Recurrent metastatic rhabdomyosarcoma remains largely incurable. Here, the authors describe a child with metastatic rhabdomyosarcoma who has durable response to HER2-specific CAR T cells and shows endogenous immune reactivity.
Journal Article
A high-content screen of FDA approved drugs to enhance CAR T cell function: ingenol-3-angelate improves B7-H3-CAR T cell activity by upregulating B7-H3 on the target cell surface via PKCα activation
by
O’Reilly, Carla
,
Lee, Ha Won
,
Chen, Taosheng
in
Antibodies
,
Apoptosis
,
B7 Antigens - genetics
2024
Background
CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success.
Methods
We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function.
Results
Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays.
Conclusions
This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.
Journal Article
A Novel Orthotopic Implantation Technique for Osteosarcoma Produces Spontaneous Metastases and Illustrates Dose-Dependent Efficacy of B7-H3-CAR T Cells
2021
The outcome for metastatic pediatric osteosarcoma (OS) remains poor. Thus, there is an urgent need to develop novel therapies, and immunotherapy with CAR T cells has the potential to meet this challenge. However, there is a lack of preclinical models that mimic salient features of human disease including reliable development of metastatic disease post orthotopic OS cell injection. To overcome this roadblock, and also enable real-time imaging of metastatic disease, we took advantage of LM7 OS cells expressing firefly luciferase (LM7.ffLuc). LM7.ffLuc were implanted in a collagen mesh into the tibia of mice, and mice reliably developed orthotopic tumors and lung metastases as judged by bioluminescence imaging and histopathological analysis. Intratibial implantation also enabled surgical removal by lower leg amputation and monitoring for metastases development post-surgery. We then used this model to evaluate the antitumor activity of CAR T cells targeting B7-H3, an antigen that is expressed in a broad range of solid tumors including OS. B7-H3-CAR T cells had potent antitumor activity in a dose-dependent manner and inhibited the development of pulmonary metastases resulting in a significant survival advantage. In contrast T cells expressing an inactive B7-H3-CAR had no antitumor activity. Using unmodified LM7 cells also enabled us to demonstrate that B7-H3-CAR T cells traffic to orthotopic tumor sites. Hence, we have developed an orthotopic, spontaneously metastasizing OS model. This model may improve our ability not only to predict the safety and efficacy of current and next generation CAR T cell therapies but also other treatment modalities for metastatic OS.
Journal Article
CD47 expression is critical for CAR T-cell survival in vivo
2023
BackgroundCD47 is an attractive immunotherapeutic target because it is highly expressed on multiple solid tumors. However, CD47 is also expressed on T cells. Limited studies have evaluated CD47-chimeric antigen receptor (CAR) T cells, and the role of CD47 in CAR T-cell function remains largely unknown.MethodsHere, we describe the development of CD47-CAR T cells derived from a high affinity signal regulatory protein α variant CV1, which binds CD47. CV1-CAR T cells were generated from human peripheral blood mononuclear cells and evaluated in vitro and in vivo. The role of CD47 in CAR T-cell function was examined by knocking out CD47 in T cells followed by downstream functional analyses.ResultsWhile CV1-CAR T cells are specific and exhibit potent activity in vitro they lacked antitumor activity in xenograft models. Mechanistic studies revealed CV1-CAR T cells downregulate CD47 to overcome fratricide, but CD47 loss resulted in their failure to expand and persist in vivo. This effect was not limited to CV1-CAR T cells, since CD47 knockout CAR T cells targeting another solid tumor antigen exhibited the same in vivo fate. Further, CD47 knockout T cells were sensitive to macrophage-mediated phagocytosis.ConclusionsThese findings highlight that CD47 expression is critical for CAR T-cell survival in vivo and is a ‘sine qua non’ for successful adoptive T-cell therapy.
Journal Article
263 Unveiling the role of macrophages in CAR T-cell induced remodeling of the brain tumor immune microenvironment: implications for anti-glioma adoptive immunotherapy
2023
BackgroundUnderstanding the intricate dynamics between adoptively transferred immune cells and the brain tumor immune microenvironment (TIME) is crucial for the development of effective T-cell-based immunotherapies. In this study, we investigated the influence of TIME and chimeric antigen receptor (CAR) design on the anti-glioma activity of B7-H3-specific CAR T-cells.MethodsUsing an innovative approach in an immune competent glioma model, we generated a diverse panel of seven fully murine B7-H3 CARs with variations in transmembrane, co-stimulatory, and activation domains. This enabled us to comprehensively investigate their effector functions within the intact immune system. High-dimensional flow cytometry, spatial transcriptomic analysis, and single-cell RNA sequencing were then used to investigate changes in the brain TIME following CAR T-cell therapy.ResultsFive out of six B7-H3 CARs with single co-stimulatory domains demonstrated robust functionality in vitro. However, optimizing co-stimulation and signaling did not lead to superior anti-glioma efficacy of B7-H3 CAR T-cells in vivo. To enhance therapeutic effectiveness and persistence, we incorporated 4–1BB and CD28 co-stimulation through transgenic expression of 4–1BBL on CD28-based CAR T-cells. This modification significantly improved the anti-glioma efficacy of B7-H3 CAR T-cells in vitro but did not result in additional improvements in vivo. Analysis of the TIME revealed that CAR T-cell therapy influenced the composition of the brain TIME. Recruitment, activation, and spatial localization of unique inflammatory ‘immune hubs’ with specific subsets of macrophages and endogenous T-cells dictated successful anti-tumor responses.ConclusionsOur study highlights the critical role of CAR structural design and its modulation of the TIME in mediating the efficacy of CAR T-cell therapy for high-grade glioma. Our findings contribute to a broader understanding of the complex interactions within the tumor microenvironment and provide insights for optimizing CAR T-cell immunotherapies for glioma treatment. Further research is warranted to fully elucidate the underlying mechanisms and identify strategies to enhance the therapeutic potential of CAR T-cell therapies in high-grade glioma.
Journal Article
P53 regulates the migration of mesenchymal stromal cells in response to the tumor microenvironment through both CXCL12-dependent and -independent mechanisms
2013
Mesenchymal stromal cells (MSCs) are multipotent fibroblast-like cells located in the bone marrow that localize to areas of tissue damage including wounds and solid tumors. Within the tumor microenvironment, MSCs adopt the phenotype of carcinoma-associated fibroblasts (CAFs) and stimulate tumor growth. Production of the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1), by MSCs is required for their in vitro migration in response to tumor cells and has also been implicated in stimulation of tumor growth. The tumor suppressor p53 regulates cellular migration, CXCL12 production and the promotion of tumor growth by carcinoma-associated fibroblasts (CAFs). We investigated the role of p53 in MSC migration to tumors. P53 inhibits the migration of MSCs in response to tumor cells in conjunction with a decrease in CXCL12 transcription. Conversely, decreased p53 activity leads to enhanced MSC migration. Interestingly, increased p53 activity inhibits MSC migration even in the context of high concentrations of exogenous CXCL12. These data show that stromal p53 status impacts the recruitment of MSCs to solid tumors through both regulation of CXCL12 production as well as other mechanisms. Stromal p53 may influence other important aspects of tumor biology such as tumor growth and metastasis through mechanisms distinct from CXCL12.
Journal Article
cBAF complex components and MYC cooperate early in CD8+ T cell fate
2022
The identification of mechanisms to promote memory T (T
mem
) cells has important implications for vaccination and anti-cancer immunotherapy
1
–
4
. Using a CRISPR-based screen for negative regulators of T
mem
cell generation in vivo
5
, here we identify multiple components of the mammalian canonical BRG1/BRM-associated factor (cBAF)
6
,
7
. Several components of the cBAF complex are essential for the differentiation of activated CD8
+
T cells into T effector (T
eff
) cells, and their loss promotes T
mem
cell formation in vivo. During the first division of activated CD8
+
T cells, cBAF and MYC
8
frequently co-assort asymmetrically to the two daughter cells. Daughter cells with high MYC and high cBAF display a cell fate trajectory towards T
eff
cells, whereas those with low MYC and low cBAF preferentially differentiate towards T
mem
cells. The cBAF complex and MYC physically interact to establish the chromatin landscape in activated CD8
+
T cells. Treatment of naive CD8
+
T cells with a putative cBAF inhibitor during the first 48 h of activation, before the generation of chimeric antigen receptor T (CAR-T) cells, markedly improves efficacy in a mouse solid tumour model. Our results establish cBAF as a negative determinant of T
mem
cell fate and suggest that manipulation of cBAF early in T cell differentiation can improve cancer immunotherapy.
cBAF is a negative determinant of memory T cell fate and the manipulation of cBAF early in T cell differentiation can improve cancer immunotherapy.
Journal Article
A high-content screen of FDA approved drugs to enhance CAR T cell function: ingenol-3-angelate improves B7-H3-CAR T cell activity by upregulating B7-H3 on the target cell surface via PKCalpha activation
2024
Background CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. Methods We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. Results Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. Conclusions This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression. Keywords: Ingenol-3-angelate, PKC, B7-H3, CAR, T cell, Osteosarcoma, Solid tumor, High-content screen, High-throughput screen
Journal Article
Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial
2024
In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 10
T cells per m
after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 10
CAR
T cells per m
after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .
Journal Article