Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
355 result(s) for "DeSalle, Rob"
Sort by:
Our senses : an immersive experience
\"A lively and unconventional exploration of our senses, how they work, what is revealed when they don't, and how they connect us to the world. Over the past decade neuroscience has uncovered a wealth of new information about our senses and how they serve as our gateway to the world. This splendidly accessible book explores the most intriguing findings of this research. With infectious enthusiasm, Rob DeSalle illuminates not only how we see, hear, smell, touch, taste, maintain balance, feel pain, and rely on other less familiar senses, but also how these senses shape our perception of the world aesthetically, artistically, and musically. DeSalle first examines the question of how perception and consciousness are formed in the brain, setting human senses in an evolutionary context. He then investigates such varied themes as supersenses and diminished senses, synesthesia and other cross-sensory phenomena, hemispheric specialization, diseases, anomalies induced by brain injuries, and hallucinations. Focusing on what is revealed about our senses through the extraordinary, he provides unparalleled insights into the unique wonders of the human brain.\"--Publisher's description.
The Next Generation of Microbial Ecology and Its Importance in Environmental Sustainability
Collectively, we have been reviewers for microbial ecology, genetics and genomics studies that include environmental DNA (eDNA), microbiome studies, and whole bacterial genome biology for Microbial Ecology and other journals for about three decades. Here, we wish to point out trends and point to areas of study that readers, especially those moving into the next generation of microbial ecology research, might learn and consider. In this communication, we are not saying the work currently being accomplished in microbial ecology and restoration biology is inadequate. What we are saying is that a significant milestone in microbial ecology has been reached, and approaches that may have been overlooked or were unable to be completed before should be reconsidered in moving forward into a new more ecological era where restoration of the ecological trajectory of systems has become critical. It is our hope that this introduction, along with the papers that make up this special issue, will address the sense of immediacy and focus needed to move into the next generation of microbial ecology study.
Key transitions in animal evolution
\"The origin of multicellular animals is one of those difficult and delicate biological problems that have been pondered for centuries. This book summarizes recent results in phylogenetics and developmental biology that address the evolution of key innovations in metazoans. The first section covers phylogenetic issues. Focusing on nervous system and sensory organ development, the second section addresses prominent questions concerning the developmental biology of metazoan evolution. A third section discusses the evolution of pattern and process in the incredible forms of life that we call Metazoa and covers evolution of life histories and the evolution of biogeochemical aspects of metazoans. The book has over 40 illustrations and an up-to-date bibliography of over 500 references. Each chapter concludes with a set of questions for study and discussion.\"-- Provided by publisher.
Innate immunity in the simplest animals – placozoans
Background Innate immunity provides the core recognition system in animals for preventing infection, but also plays an important role in managing the relationship between an animal host and its symbiont. Most of our knowledge about innate immunity stems from a few animal model systems, but substantial variation between metazoan phyla has been revealed by comparative genomic studies. The exploration of more taxa is still needed to better understand the evolution of immunity related mechanisms. Placozoans are morphologically the simplest organized metazoans and the association between these enigmatic animals and their rickettsial endosymbionts has recently been elucidated. Our analyses of the novel placozoan nuclear genome of Trichoplax sp. H2 and its associated rickettsial endosymbiont genome clearly pointed to a mutualistic and co-evolutionary relationship. This discovery raises the question of how the placozoan holobiont manages symbiosis and, conversely, how it defends against harmful microorganisms. In this study, we examined the annotated genome of Trichoplax sp. H2 for the presence of genes involved in innate immune recognition and downstream signaling. Results A rich repertoire of genes belonging to the Toll-like and NOD-like receptor pathways, to scavenger receptors and to secreted fibrinogen-related domain genes was identified in the genome of Trichoplax sp. H2. Nevertheless, the innate immunity related pathways in placozoans deviate in several instances from well investigated vertebrates and invertebrates. While true Toll- and NOD-like receptors are absent, the presence of many genes of the downstream signaling cascade suggests at least primordial Toll-like receptor signaling in Placozoa. An abundance of scavenger receptors, fibrinogen-related domain genes and Apaf-1 genes clearly constitutes an expansion of the immunity related gene repertoire specific to Placozoa. Conclusions The found wealth of immunity related genes present in Placozoa is surprising and quite striking in light of the extremely simple placozoan body plan and their sparse cell type makeup. Research is warranted to reveal how Placozoa utilize this immune repertoire to manage and maintain their associated microbiota as well as to fend-off pathogens.
Accidental Homo sapiens : genetics, behavior, and free will
\"Two leading scientists reveal how we became the amazing creatures we are--and help us understand the biology that makes human beings uniquely capable of choice.\"--Dust jacket flap.
Troublesome science : the misuse of genetics and genomics in understanding race
It is well established that all human beings today, wherever they live, belong to one single species. Yet even many people who claim to abhor racism take for granted that human \"races\" have a biological reality. From pharmacological researchers to the U.S. government, the dubious tradition of classifying people by race lives on. In Troublesome Science, Rob DeSalle and Ian Tattersall provide a lucid and compelling presentation of how the tools of modern biological science have been misused to sustain the belief in the biological basis of racial classification. Troublesome Science argues that taxonomy, the scientific classification of organisms, provides a cure for such misbegotten mischaracterizations. DeSalle and Tattersall explain how taxonomists do their job, in particular the genomic and morphological techniques they use to identify a species and to understand and organize the relationships among different species and the variants within them. They detail the use of genetic data to trace human origins and look at how scientists have attempted to recognize discrete populations within Homo sapiens. DeSalle and Tattersall demonstrate conclusively that these techniques, when applied correctly to the study of human variety, fail to find genuine differences, striking a blow against pseudoscientific chicanery. While the diversity that exists within our species is a real phenomenon, it nevertheless defeats any systematic attempt to recognize discrete units within it. The stark lines that humans insist on drawing between their own groups and others are nothing but a mixture of imagination and ideology.
The unholy trinity: taxonomy, species delimitation and DNA barcoding
Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this 'DNA barcoding' initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the 'DNA barcoding' initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the 'DNA barcoding' initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings-Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of 'DNA barcoding'.
Can public online databases serve as a source of phenotypic information for Cannabis genetic association studies?
The use of Cannabis is gaining greater social acceptance for its beneficial medicinal and recreational uses. With this acceptance has come new opportunities for crop management, selective breeding, and the potential for targeted genetic manipulation. However, as an agricultural product Cannabis lags far behind other domesticated plants in knowledge of the genes and genetic variation that influence plant traits of interest such as growth form and chemical composition. Despite this lack of information, there are substantial publicly available resources that document phenotypic traits believed to be associated with particular Cannabis varieties. Such databases could be a valuable resource for developing a greater understanding of genes underlying phenotypic variation if combined with appropriate genetic information. To test this potential, we collated phenotypic data from information available through multiple online databases. We then produced a Cannabis SNP database from 845 strains to examine genome wide associations in conjunction with our assembled phenotypic traits. Our goal was not to locate Cannabis -specific genetic variation that correlates with phenotypic variation as such, but rather to examine the potential utility of these databases more broadly for future, explicit genome wide association studies (GWAS), either in stand-alone analyses or to complement other types of data. For this reason, we examined a very broad array of phenotypic traits. In total, we performed 201 distinct association tests using web-derived phenotype data appended to 290 uniquely named Cannabis strains. Our results indicated that chemical phenotypes, such as tetrahydrocannabinol (THC) and cannabidiol (CBD) content, may have sufficiently high-quality information available through web-based sources to allow for genetic association inferences. In many cases, variation in chemical traits correlated with genetic variation in or near biologically reasonable candidate genes, including several not previously implicated in Cannabis chemical variation. As with chemical phenotypes, we found that publicly available data on growth traits such as height, area of growth, and floral yield may be precise enough for use in future association studies. In contrast, phenotypic information for subjective traits such as taste, physiological affect, neurological affect, and medicinal use appeared less reliable. These results are consistent with the high degree of subjectivity for such trait data found on internet databases, and suggest that future work on these important but less easily quantifiable characteristics of Cannabis may require dedicated, controlled phenotyping.