Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"DeSalvo, Riccardo"
Sort by:
The Micro Modular Reactors MMR
2024
The Micro Modular Reactor (MMR) represents a new paradigm of Ultra Safe Nuclear power with intrinsic safety. The safety starts from its revolutionary ceramic fuel, that cannot melt and makes it impossible to release radioactive elements in the environment. The elimination of water as a heat transport fluid eliminates the possibility of chemical explosions. Uranium 238, that absorbs more neutrons at higher temperatures shuts down the chain reaction without damage even in case of coolant loss at full power. These characteristics make MMR ideal to provide heat process directly inside factories, to replace natural gas, and to provide power to small communities.
Journal Article
Optical Coatings and Thermal Noise in Precision Measurement
by
Bodiya, Timothy P.
,
Harry, Gregory M.
,
DeSalvo, Riccardo
in
Electromagnetic waves
,
Electromagnetic waves -- Scattering
,
Light
2012
Thermal noise from optical coatings is a growing area of concern and overcoming limits to the sensitivity of high precision measurements by thermal noise is one of the greatest challenges faced by experimental physicists. In this timely book, internationally renowned scientists and engineers examine our current theoretical and experimental understanding. Beginning with the theory of thermal noise in mirrors and substrates, subsequent chapters discuss the technology of depositing coatings and state-of-the-art dielectric coating techniques used in precision measurement. Applications and remedies for noise reduction are also covered. Individual chapters are dedicated to specific fields where coating thermal noise is a particular concern, including the areas of quantum optics/optomechanics, gravitational wave detection, precision timing, high-precision laser stabilisation via optical cavities and cavity quantum electrodynamics. While providing full mathematical detail, the text avoids field-specific jargon, making it a valuable resource for readers with varied backgrounds in modern optics.
Emergence and Evolution of Crystallization in TiO2 Thin Films: A Structural and Morphological Study
by
Granata, Veronica
,
Chiadini, Francesco
,
Neilson, Joshua
in
Annealing
,
Atomic force microscopy
,
Crosstalk
2021
Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250–1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.
Journal Article
Crystallization in Zirconia Film Nano-Layered with Silica
by
LeBohec, Tugdual
,
DeSalvo, Gilberto
,
Larsen, Brecken
in
Amorphous materials
,
Annealing
,
coating
2021
Gravitational waves are detected using resonant optical cavity interferometers. The mirror coatings’ inherent thermal noise and photon scattering limit sensitivity. Crystals within the reflective coating may be responsible for either or both noise sources. In this study, we explored crystallization reduction in zirconia through nano-layering with silica. We used X-ray diffraction (XRD) to monitor crystal growth between successive annealing cycles. We observed crystal formation at higher temperatures in thinner zirconia layers, indicating that silica is a successful inhibitor of crystal growth. However, the thinnest barriers break down at high temperatures, thus allowing crystal growth beyond each nano-layer. In addition, in samples with thicker zirconia layers, we observe that crystallization saturates with a significant portion of amorphous material remaining.
Journal Article
Tunnel Configurations and Seismic Isolation Optimization in Underground Gravitational Wave Detectors
by
Badaracco, Francesca
,
Amann, Florian
,
Selleri, Stefano
in
Design
,
Einstein Telescope
,
Gravitational waves
2022
The Einstein Telescope will be a gravitational wave observatory comprising six nested detectors, three optimized to collect low-frequency signals, and three for high frequency. It will be built a few hundred meters under Earth’s surface to reduce direct seismic and Newtonian noise. A critical issue with the Einstein Telescope design are the three corner stations, each hosting at least one sensitive component of all six detectors in the same hall. Maintenance, commissioning, and upgrade activities on a detector will cause interruptions of the operation of the other five, in some cases for years, thus greatly reducing the Einstein Telescope observational duty cycle. This paper proposes a new topology that moves the recombination and input–output optics of the Michelson interferometers, the top stages of the seismic attenuation chains and noise-inducing equipment in separate excavations far from the tunnels where the test masses reside. This separation takes advantage of the shielding properties of the rock mass to allow continuing detection with most detectors even during maintenance and upgrade of others. This configuration drastically improves the observatory’s event detection efficiency. In addition, distributing the seismic attenuation chain components over multiple tunnel levels allows the use of effectively arbitrarily long seismic attenuation chains that relegate the seismic noise at frequencies farther from the present low-frequency noise budget, thus keeping the door open for future upgrades. Mechanical crowding around the test masses is eliminated allowing the use of smaller vacuum tanks and reduced cross section of excavations, which require less support measures.
Journal Article
Optimizing nanostructure deposition process for optical applications
by
Granata, Veronica
,
Chiadini, Francesco
,
Bennett, Timothy F.
in
Argon
,
Atomic clocks
,
Coatings
2024
In many physics and engineering applications requiring exceptional precision, the presence of highly reflective coatings with low thermal noise is of utmost significance. These applications include high‐resolution spectroscopy, optical atomic clocks, and investigations into fundamental physics such as gravitational wave detection. Enhancing sensitivity in these experiments relies on effectively reducing the thermal noise originating from the coatings. While ion beam sputtering (IBS) is typically employed for fabricating such coatings, electron beam evaporation can also be utilized and offers certain advantages over IBS, such as versatility and speed. However, a significant challenge in the fabrication process has been the limitations of the quartz crystal monitor used to measure the thickness of the deposited layers. This paper showcases how, through hardware and software upgrades, it becomes achievable to create high‐density coatings with layers as thin as a few angstroms by using electron beam evaporation (OAC75F coater) with a deposition rate of 1 Å/s and ion‐assisted source with a gas mixture of oxygen and argon, using a pressure of about 4 × 10−4 mbar. Furthermore, these upgrades enable the attainment of high levels of precision and uniformity in the thickness of the coatings. Electron beam evaporation is used to deposit nanolayer film for optical applications by overcoming the limitations of the quartz crystal monitor used to measure the thickness of the deposited layers. Through hardware and software upgrades, it becomes achievable to create coatings with layers as thin as a few angstroms.
Journal Article
Active damping performance of the KAGRA seismic attenuation system prototype
by
Ishizaki, Hideharu
,
Aso, Yoichi
,
Akutsu, Tomotada
in
Active control
,
Active damping
,
Cryoforming
2016
The Large-scale Cryogenic Gravitational wave Telescope (formerly LCGT now KAGRA) is presently under construction in Japan. This May we assembled a prototype of the seismic attenuation system (SAS) for the beam splitter and the signal recycling mirrors of KAGRA, which we call Type-B SAS, and evaluated its performance at NAOJ (Mitaka, Toyko). We investigated its frequency response, active damping performance, vibration isolation performance and long-term stability both in and out of vacuum. From the frequency response test and the active damping performance test, we confirmed that the SAS worked as we designed and that all mechanical resonances which could disturb lock acquisition and observation are damped within 1 minute, which is required for KAGRA, by the active controls.
Journal Article
A Multi-Step Approach to Assessing LIGO Test Mass Coatings
2018
Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. If identified as crystallites, these scatterers would be a possible source of the mirror dissipation and thermal noise, which limit the sensitivity of observatories to Gravitational Waves. In order to learn more about the composition and location of the detected scatterers, a feasibility study is underway to develop a method that determines the location of the scatterers by producing a complete mapping of scatterers within test samples, including their depth distribution, optical amplitude distribution, and lateral distribution. Also, research is underway to accurately identify future materials and/or coating methods that possess the largest possible mechanical quality factor (Q). Current efforts propose a new experimental approach that will more precisely measure the Q of coatings by depositing them onto 100 nm Silicon Nitride membranes.
Journal Article
Emergence and Evolution of Crystallization in TiO 2 Thin Films: A Structural and Morphological Study
2021
Among all transition metal oxides, titanium dioxide (TiO
) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO
thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250-1000 °C, and the TiO
thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO
thickness and annealing temperature, both ultimately affecting the degree of crystallinity.
Journal Article
The role of Self-Organized Criticality in elasticity of metallic springs: Observations of a new dissipation regime
by
DiCintio, Arianna
,
DeSalvo, Riccardo
,
Lundin, Mark
in
Applied and Technical Physics
,
Atomic
,
Complex Systems
2011
We present investigations of low-frequency stochastic deviations from elasticity of Maraging steel springs used in the seismic isolation of the Virgo, Advanced LIGO, and TAMA interferometers. Our studies reveal unexpected facets of elasticity and dissipation in metals, in which a spring is observed to abandon its linear behavior. Various forms of anomalous low-frequency oscillator behavior are characterized, quantified and discussed. These include fluctuations of the Young’s Modulus, hysteretic properties, random walk of equilibrium point and spontaneous de-stabilization events, which occasionally lead to collapse. We made a conjecture that rationalizes all of the anomalies, namely that the observed effects are due to collective interactions of entangling and disentangling dislocations. A phase transition involving switching from a linear to a chaotic regimes is observed —at time scales less than one second— and is shown to be consistent with Self-Organized Criticality (SOC). The threshold frequency to this regime is determined by the material characteristics, as well as by the physical shape and dimensions of flexures.
Journal Article