Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
15
result(s) for
"Dea, Jeanselle"
Sort by:
Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder
by
Lin, Kevin
,
Zhao, Xuefang
,
Ahituv, Nadav
in
Annotations
,
Autism
,
Autism Spectrum Disorder - genetics
2018
Whole-genome sequencing (WGS) has facilitated the first genome-wide evaluations of the contribution of de novo noncoding mutations to complex disorders. Using WGS, we identified 255,106 de novo mutations among sample genomes from members of 1902 quartet families in which one child, but not a sibling or their parents, was affected by autism spectrum disorder (ASD). In contrast to coding mutations, no noncoding functional annotation category, analyzed in isolation, was significantly associated with ASD. Casting noncoding variation in the context of a de novo risk score across multiple annotation categories, however, did demonstrate association with mutations localized to promoter regions. We found that the strongest driver of this promoter signal emanates from evolutionarily conserved transcription factor binding sites distal to the transcription start site. These data suggest that de novo mutations in promoter regions, characterized by evolutionary and functional signatures, contribute to ASD.
Journal Article
A Phenotypic Profile of the Candida albicans Regulatory Network
by
Homann, Oliver R.
,
Dea, Jeanselle
,
Johnson, Alexander D.
in
Candida albicans
,
Candida albicans - cytology
,
Candida albicans - genetics
2009
Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but not its overall output.
Journal Article
Autism gene variants disrupt enteric neuron migration and cause gastrointestinal dysmotility
2025
The co-occurrence of autism and gastrointestinal distress is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence, large-effect autism genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons and their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated genetic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen autism genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using
Xenopus tropicalis
, we individually target five of these genes (
SYNGAP1
,
CHD8
,
SCN2A
,
CHD2
, and
DYRK1A
) and observe disrupted enteric neuronal progenitor migration for each. Further analysis of
DYRK1A
reveals that perturbation causes gut dysmotility in vivo, which can be ameliorated by treatment with either of two serotonin signaling modulators, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that serotonin signaling may be a productive therapeutic pathway.
Gastrointestinal distress is common among individuals with autism. Here, authors show that autism gene variants disrupt enteric neuron migration and cause gut dysmotility. They identify a common SSRI that can ameliorate this dysmotility in
Xenopus
.
Journal Article
The contribution of de novo coding mutations to autism spectrum disorder
2014
Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of
de novo
missense mutations and 43% of
de novo
likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding
de novo
mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.
Family-based exome sequencing in a large autism study has identified 27 high-confidence gene targets and accurately estimates the contribution of both
de novo
gene-disrupting and missense mutations to the incidence of simplex autism, with target genes in affected females overlapping those in males of lower but not higher IQ; targets also overlap known targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes.
Autism-linked genetic factors analysed
Autism spectrum disorder (ASD) is a broad group of brain development disorders, including autism, childhood disintegrative disorder and Asperger's syndrome, characterized by impaired social interaction and communication, repetitive behaviour and restricted interests. Two groups reporting in this issue of
Nature
have used large-scale whole-exome sequencing to examine the contribution of inherited and germline
de novo
mutations to ASD risk. Silvia De Rubeis
et al
. analysed DNA samples from 3,871 autism cases and 9,937 ancestry-matched or parental controls and identify more than 100 autosomal genes that are likely to affect risk for the disease.
De novo
loss-of-function mutations were detected in more than 5% of autistic subjects. Many of the associated gene products appear to function in synaptic, transcriptional, and chromatin remodelling pathways. Ivan Iossifov
et al
. sequenced exomes from more than 2,500 families, each with one child with ASD. They identify 27 high-confidence gene targets and estimate that 13% of
de novo
missense mutations and 43% of
de novo
'likely gene-disrupting' (LGD) mutations contribute to 12% and 9% of diagnoses, respectively.
Journal Article
An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder
2018
Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.
This study presents a framework to evaluate rare and de novo variation from whole-genome sequencing (WGS). The work suggests that robust results from WGS studies will require large cohorts and strategies that consider the substantial multiple-testing burden.
Journal Article
Convergence of autism proteins at the cilium
2025
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Journal Article
Pleiotropy of autism-associated chromatin regulators
2022
Gene ontology analyses of high confidence autism spectrum disorder (hcASD) risk genes have historically highlighted chromatin regulation and synaptic function as major contributors to pathobiology. Our recent functional work in vivo has additionally implicated microtubule biology and identified disrupted cellular proliferation as a convergent ASD phenotype. As many chromatin regulators, including ASD risk genes ADNP and CHD3, are known to directly regulate both tubulins and histones, we studied the five chromatin regulators most strongly associated with ASD (ADNP, CHD8, CHD2, POGZ, and SUV420H1/KMT5B) specifically with respect to microtubule biology. We observe that all five localize to microtubules of the mitotic spindle in vitro and in vivo. Further in-depth investigation of CHD2 provides evidence that patient-derived mutations lead to a range of microtubule-related phenotypes, including disrupted localization of the protein at the mitotic spindle, spindle defects, cell cycle stalling, DNA damage, and cell death. Lastly, we observe that ASD genetic risk is significantly enriched among microtubule-associated proteins, suggesting broader relevance. Together, these results provide further evidence that the role of tubulin biology and cellular proliferation in ASD warrant further investigation and highlight the pitfalls of relying solely on annotated gene functions in the search for pathological mechanisms.Competing Interest StatementThe authors have declared no competing interest.