Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Dean-Day, Jonathan"
Sort by:
Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign
by
Bedka, Kristopher M.
,
Sayres, David S.
,
Ueyama, Rei
in
Aircraft
,
Aircraft observations
,
Altitude
2023
Water vapor's contribution to Earth's radiative forcing is most sensitive to changes in its lower stratosphere concentration. One recognized pathway for rapid increases in stratospheric water vapor is tropopause‐overshooting convection. Since this pathway has been rarely sampled, the NASA Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) field project focused on obtaining in situ observations of stratospheric air recently affected by convection over the United States. This study reports on the extreme altitudes to which convective hydration was observed. The data show that the overworld stratosphere is routinely hydrated by convection and that past documented records of stratospheric heights of convective hydration were exceeded during several DCOTSS flights. The most extreme event sampled is highlighted, for which stratospheric water vapor was increased by up to 26% at an altitude of 19.25 km, a potential temperature of 463 K, and an ozone mixing ratio >1500 ppbv. Plain Language Summary When thunderstorms reach into the second layer of the atmosphere above Earth's surface, the stratosphere, they may impact the concentration and distribution of trace gases that are important to chemistry and climate. One gas that is routinely affected during these events is water vapor, which is typically scarce in the stratosphere. This study presents new aircraft observations of extreme heights in the stratosphere moistened by these thunderstorms. Since increases in stratospheric water vapor positively contribute to warming of Earth's climate and can activate chemistry that destroys ozone, better understanding of this phenomenon helps refine our understanding of its role in the climate system. The new aircraft observations provide clear evidence that water vapor is enhanced by thunderstorms at higher levels in the stratosphere than previously recognized. Key Points Tropopause‐overshooting convection in the United States hydrates the stratosphere to exceptional heights Observations of the height of stratospheric convective hydration during the Dynamics and Chemistry of the Summer Stratosphere field campaign exceed all prior global records The overworld stratosphere is routinely hydrated by midlatitude overshooting convection
Journal Article
Sea spray aerosol concentration modulated by sea surface temperature
by
Weinzierl, Bernadett
,
Liu, Shang
,
Dean-Day, Jonathan M.
in
Earth, Atmospheric, and Planetary Sciences
,
Physical Sciences
2021
Natural aerosols in pristine regions form the baseline used to evaluate the impact of anthropogenic aerosols on climate. Sea spray aerosol (SSA) is a major component of natural aerosols. Despite its importance, the abundance of SSA is poorly constrained. It is generally accepted that wind-driven wave breaking is the principle governing SSA production. This mechanism alone, however, is insufficient to explain the variability of SSA concentration at given wind speed. The role of other parameters, such as sea surface temperature (SST), remains controversial. Here, we show that higher SST promotes SSA mass generation at a wide range of wind speed levels over the remote Pacific and Atlantic Oceans, in addition to demonstrating the wind-driven SSA production mechanism. The results are from a global scale dataset of airborne SSA measurements at 150 to 200 m above the ocean surface during the NASA Atmospheric Tomography Mission. Statistical analysis suggests that accounting for SST greatly enhances the predictability of the observed SSA concentration compared to using wind speed alone. Our results support implementing SST into SSA source functions in global models to better understand the atmospheric burdens of SSA.
Journal Article
Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes
by
Sayres, David S.
,
Ueyama, Rei
,
Hanisco, Thomas F.
in
Air masses
,
Air sampling
,
Air temperature
2024
Tropopause-overshooting convection in the midlatitudes provides a rapid transport pathway for air from the lower troposphere to reach the upper troposphere and lower stratosphere (UTLS) and can result in the formation of above-anvil cirrus plumes (AACPs) that significantly hydrate the stratosphere. Such UTLS composition changes alter the radiation budget and impact climate. Novel in situ observations from the NASA Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) field campaign are used in this study to examine UTLS impacts from AACP-generating overshooting convection. Namely, a research flight on 31 May 2022 sampled active convection over the state of Oklahoma for more than 3 h with the NASA ER-2 high-altitude research aircraft. An AACP was bisected during this flight, providing the first such extensive in situ sampling of this phenomenon. The convective observations reveal pronounced changes in air mass composition and stratospheric hydration up to altitudes of 2.3 km above the tropopause and concentrations more than double background levels. Unique dynamic and trace gas signatures were found within the AACP, including enhanced vertical mixing near the AACP edge and a positive correlation between water vapor and ozone. Moreover, the water vapor enhancement within the AACP was found to be limited to the saturation mixing ratio of the low temperature overshoot and AACP air. Comparison with all remaining DCOTSS flights demonstrates that the 31 May 2022 flight had some of the largest tropospheric tracer and water vapor perturbations in the stratosphere and within the AACP.
Journal Article
Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations
by
Ryerson, Thomas B.
,
Crounse, John D.
,
Wolfe, Glenn M.
in
Earth, Atmospheric, and Planetary Sciences
,
Formaldehyde
,
Gases
2019
The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 106 cm−3), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss.
Journal Article
Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation
by
Wiggins, Elizabeth B.
,
Guo, Hongyu
,
June, Nicole A.
in
Aerosol size distribution
,
Aerosols
,
Ageing
2022
The evolution of organic aerosol (OA) and aerosol size distributions within smoke plumes is uncertain due to the variability in rates of coagulation and OA condensation/evaporation between different smoke plumes and at different locations within a single plume. We use aircraft data from the FIREX-AQ campaign to evaluate differences in evolving aerosol size distributions, OA, and oxygen to carbon ratios (O:C) between and within smoke plumes during the first several hours of aging as a function of smoke concentration. The observations show that the median particle diameter increases faster in smoke of a higher initial OA concentration (>1000 µg m−3), with diameter growth of over 100 nm in 8 h – despite generally having a net decrease in OA enhancement ratios – than smoke of a lower initial OA concentration (<100 µg m−3), which had net increases in OA. Observations of OA and O:C suggest that evaporation and/or secondary OA formation was greater in less concentrated smoke prior to the first measurement (5–57 min after emission). We simulate the size changes due to coagulation and dilution and adjust for OA condensation/evaporation based on the observed changes in OA. We found that coagulation explains the majority of the diameter growth, with OA evaporation/condensation having a relatively minor impact. We found that mixing between the core and edges of the plume generally occurred on timescales of hours, slow enough to maintain differences in aging between core and edge but too fast to ignore the role of mixing for most of our cases.
Journal Article
Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection
by
Stachnik, Robert A.
,
Bedka, Kristopher M.
,
Chin, Keith
in
Air parcels
,
Aircraft
,
Anticyclonic circulation
2017
The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).
Journal Article
Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements
by
Chang, Cecilia S.
,
Dean-Day, Jonathan M.
,
Yates, Emma L.
in
Aircraft
,
Carbon dioxide
,
Carbon dioxide emissions
2019
Emission estimates of carbon dioxide (CO2) and methane (CH4) and the meteorological factors affecting them are investigated over Sacramento, California, using an aircraft equipped with a cavity ring-down greenhouse gas sensor as part of the Alpha Jet Atmospheric eXperiment (AJAX) project. To better constrain the emission fluxes, we designed flights in a cylindrical pattern and computed the emission fluxes from two flights using a kriging method and Gauss’s divergence theorem. Differences in wind treatment and assumptions about background concentrations affect the emission estimates by a factor of 1.5 to 7. The uncertainty is also impacted by meteorological conditions and distance from the emission sources. The vertical layer averaging affects the flux estimate, but the choice of raw wind or mass-balanced wind is more important than the thickness of the vertical averaging for massbalanced wind for both urban and local scales. The importance of vertical mass transfer for flux estimates is examined, and the difference in the total emission estimate with and without vertical mass transfer is found to be small, especially at the local scale. The total flux estimates accounting for the entire circumference are larger than those based solely on measurements made in the downwind region. This indicates that a closed-shape flight profile can better contain total emissions relative to a one-sided curtain flight because most cities have more than one point source and wind direction can change with time and altitude. To reduce the uncertainty of the emission estimate, it is important that the sampling strategy account not only for known source locations but also possible unidentified sources around the city. Our results highlight that aircraft-based measurements using a closed-shape flight pattern are an efficient and useful strategy for identifying emission sources and estimating local- and city-scale greenhouse gas emission fluxes.
Journal Article
Terrain Trapped Airflows and Precipitation Variability during an Atmospheric River Event
by
Chang, Cecilia S.
,
Dean-Day, Jonathan M.
,
Yates, Emma L.
in
Air flow
,
Airborne observation
,
Aircraft
2020
We examine thermodynamic and kinematic structures of terrain trapped airflows (TTAs) during an atmospheric river (AR) event impacting Northern California 10–11 March 2016 using Alpha Jet Atmospheric eXperiment (AJAX) aircraft data, in situ observations, and Weather and Research Forecasting (WRF) Model simulations. TTAs are identified by locally intensified low-level winds flowing parallel to the coastal ranges and having maxima over the near-coastal waters. Multiple mechanisms can produce TTAs, including terrain blocking and gap flows. The changes in winds can significantly alter the distribution, timing, and intensity of precipitation. We show here how different mechanisms producing TTAs evolve during this event and influence local precipitation variations. Three different periods are identified from the time-varying wind fields. During period 1 (P1), a TTA develops during synoptic-scale onshore flow that backs to southerly flow near the coast. This TTA occurs when the Froude number (Fr) is less than 1, suggesting low-level terrain blocking is the primary mechanism. During period 2 (P2), a Petaluma offshore gap flow develops, with flows turning parallel to the coast offshore and with Fr > 1. Periods P1 and P2 are associated with slightly more coastal than mountain precipitation. In period 3 (P3), the gap flow initiated during P2 merges with a pre-coldfrontal low-level jet (LLJ) and enhanced precipitation shifts to higher mountain regions. Dynamical mixing also becomes more important as the TTA becomes confluent with the approaching LLJ. The different mechanisms producing TTAs and their effects on precipitation pose challenges to observational and modeling systems needed to improve forecasts and early warnings of AR events.
Journal Article
An extensive database of airborne trace gas and meteorological observations from the Alpha Jet Atmospheric eXperiment (AJAX)
by
Chang, Cecilia S.
,
Dean-Day, Jonathan M.
,
Yates, Emma L.
in
Airborne sensing
,
Aircraft
,
Boundary layers
2023
The Alpha Jet Atmospheric eXperiment (AJAX) flew scientific flights between 2011 and 2018 providing measurements of trace gas species and meteorological parameters over California and Nevada, USA. This paper describes the observations made by the AJAX program over 229 flights and approximately 450 h of flying. AJAX was a multi-year, multi-objective, multi-instrument program with a variety of sampling strategies resulting in an extensive dataset of interest to a wide variety of users. Some of the more common flight objectives include satellite calibration/validation (GOSAT, OCO-2, TROPOMI) at Railroad Valley and other locations and long-term observations of free-tropospheric and boundary layer ozone allowing for studies of stratosphere-to-troposphere transport and long-range transport to the western United States. AJAX also performed topical studies such as sampling wildfire emissions, urban outflow and atmospheric rivers. Airborne measurements of carbon dioxide, methane, ozone, formaldehyde, water vapor, temperature, pressure and 3-D winds made by the AJAX program have been published at NASA's Airborne Science Data Center (https://asdc.larc.nasa.gov/project/AJAXTS9 (last access: 1 November 2022), https://doi.org/10.5067/ASDC/SUBORBITAL/AJAX/DATA001, Iraci et al., 2021a).
Journal Article
Prior heterogeneous ice nucleation events shape homogeneous freezing during the evolution of synoptic cirrus
by
Williamson, Christina J.
,
Laaksonen, Ari
,
Juurikkala, Kasper
in
Analysis
,
Cirrus clouds
,
Dynamic meteorology
2025
In situ observations are currently used to classify synoptic cirrus as formed by homogeneous or heterogeneous ice nucleation based on ice residual analysis. We use UCLALES-SALSA to show the limitations of this method by demonstrating that prior heterogeneous freezing events can shape the thermodynamic conditions for homogeneous freezing to occur more likely in subsequent nucleation events. In a single-cloud case study of synoptic cirrus from NASA’s Midlatitude Airborne Cirrus Properties Experiment (MACPEX), observations suggest homogeneous freezing as the dominant nucleation mechanism, despite the other mission days with synoptic cirrus showing generally heterogeneous freezing characteristics. Model simulations reveal that ice residual analysis cannot capture influence of earlier heterogeneous freezing events, where mineral dust acted as ice-nucleating particles (INPs). These earlier events depleted INPs at cloud-forming altitudes, enabling homogeneous freezing at the time of observations. Cirrus cloud properties were simulated using measured meteorological and aerosol conditions and compared with observed cloud structures. Results show that modeling the impact of prior nucleation events on the vertical distribution of mineral dust and humidity in the model is necessary to reproduce the observed cloud characteristics. Heterogeneous freezing played a role in the removal of active mineral dust from cloud-forming altitudes well before arriving at the measurement location, while having limited role in forming ice crystals shortly before the time of measurements. Simulations also show that small-scale wave activity significantly influenced ice nucleation efficiency and cloud properties. Although large-scale atmospheric dynamics typically dominate synoptic cirrus formation, they alone were insufficient to replicate the observed cloud characteristics.
Journal Article