Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Decker, Joshua H."
Sort by:
1403-A PTPN2/N1 inhibitor ABBV-CLS-484 unleashes potent anti-tumor immunity
BackgroundImmune checkpoint blockade is effective for a subset of patients across many cancers, but most patients are refractory to current immunotherapies and new approaches are needed to overcome resistance.1 2 The protein tyrosine phosphatase PTPN2 and the closely related PTPN1 are central regulators of inflammation, and their genetic deletion in either tumor cells or host immune cells promotes anti-tumor immunity.3–6 However, phosphatases are challenging drug targets and in particular, the active site has been considered undruggable. Here, we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2/N1 active site inhibitor.MethodsIn this study, we characterize AC484 and evaluate its effects in vitro and in vivo. We conduct in vitro experiments to investigate the interferon response and the activation and function of various immune cell subsets in response to AC484. We employ murine cancer models resistant to PD-1 blockade and assess the anti-tumor efficacy of AC484 monotherapy in these models. Additionally, through single-cell transcriptional profiling of tumor-infiltrating immune cells, we examine the transcriptional and functional effects of AC484 treatment, with a focus on CD8+ T cells.ResultsAC484 treatment demonstrates the ability to amplify the response to interferon and enhance the activation and function of multiple immune cell subsets in vitro. In murine cancer models resistant to PD-1 blockade, monotherapy AC484 treatment generates robust anti-tumor immunity. Transcriptomic and functional analyses of tumor-infiltrating immune cells reveal that AC484 treatment elicits broad effects on myeloid and lymphoid compartments, particularly influencing CD8+ T cells. Surprisingly, we find that AC484 treatment induces a unique transcriptional state in CD8+ T cells mediated by enhanced JAK-STAT signaling, whereby T cells display a highly cytotoxic effector profile, increased memory signatures, and reduced exhaustion and dysfunction.ConclusionsOur results demonstrate that oral administration of small molecule inhibitors of PTPN2/N1 can induce potent anti-tumor immunity. PTPN2/N1 inhibitors offer a promising new strategy for cancer immunotherapy and are currently being evaluated clinically in patients with advanced solid tumors (NCT04777994). More broadly, our study shows that small molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics targeting this important class of enzymes.ReferencesHugo W, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2017;168:542.Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book. 2019;39:147–164.Manguso RT, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–418.Wiede F, et al. PTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumours. EMBO J. 2020;39:e103637.LaFleur MW, et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 2019;20:1335–1347.Flosbach M, et al. PTPN2 deficiency enhances programmed T cell expansion and survival capacity of activated T cells. Cell Rep. 2020;32:107957.Ethics ApprovalThe protocol, under which human blood samples were acquired, was approved by and is reviewed on an annual basis by WCG IRB (Puyallup, Washington). WCG IRB is in full compliance with the Good Clinical Practices as defined under the U.S. Food and Drug Administration (FDA) Regulations, U.S. Department of Health and Human Services (HHS) regulations and the International Conference on Harmonisation (ICH) Guidelines. All human research participants signed informed consent forms. All animal studies at AbbVie, were reviewed and approved by AbbVie’s Institutional Animal Care and Use Committee and in compliance with the NIH Guide for Care and Use of Laboratory Animals guidelines. Animal studies were conducted in an AAALAC accredited program where veterinary care and oversight was provided to ensure appropriate animal care. All in vivo studies conducted at the Broad Institute were approved by the Broad Institute IACUC committee and mice were housed in a specific-pathogen free facility. All in vivo studies at Calico were conducted according to protocols approved by the Calico Institutional Animal Care and Use Committee.
The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity
Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance 1 , 2 . The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity 3 – 6 . However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8 + T cell function by enhancing JAK–STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes. An orally bioavailable small-molecule active-site inhibitor of the phosphatases PTPN2 and PTPN1, ABBV-CLS-484, demonstrates immunotherapeutic efficacy in mouse models of cancer resistant to PD-1 blockade.
Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data
Wildfires are increasing in size across the western US, leading to increases in human smoke exposure and associated negative health impacts. The impact of biomass burning (BB) smoke, including wildfires, on regional air quality depends on emissions, transport, and chemistry, including oxidation of emitted BB volatile organic compounds (BBVOCs) by the hydroxyl radical (OH), nitrate radical (NO3), and ozone (O3). During the daytime, when light penetrates the plumes, BBVOCs are oxidized mainly by O3 and OH. In contrast, at night or in optically dense plumes, BBVOCs are oxidized mainly by O3 and NO3. This work focuses on the transition between daytime and nighttime oxidation, which has significant implications for the formation of secondary pollutants and loss of nitrogen oxides (NOx=NO+NO2) and has been understudied. We present wildfire plume observations made during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality), a field campaign involving multiple aircraft, ground, satellite, and mobile platforms that took place in the United States in the summer of 2019 to study both wildfire and agricultural burning emissions and atmospheric chemistry. We use observations from two research aircraft, the NASA DC-8 and the NOAA Twin Otter, with a detailed chemical box model, including updated phenolic mechanisms, to analyze smoke sampled during midday, sunset, and nighttime. Aircraft observations suggest a range of NO3 production rates (0.1–1.5 ppbv h−1) in plumes transported during both midday and after dark. Modeled initial instantaneous reactivity toward BBVOCs for NO3, OH, and O3 is 80.1 %, 87.7 %, and 99.6 %, respectively. Initial NO3 reactivity is 10–104 times greater than typical values in forested or urban environments, and reactions with BBVOCs account for >97 % of NO3 loss in sunlit plumes (jNO2 up to 4×10-3s-1), while conventional photochemical NO3 loss through reaction with NO and photolysis are minor pathways. Alkenes and furans are mostly oxidized by OH and O3 (11 %–43 %, 54 %–88 % for alkenes; 18 %–55 %, 39 %–76 %, for furans, respectively), but phenolic oxidation is split between NO3, O3, and OH (26 %–52 %, 22 %–43 %, 16 %–33 %, respectively). Nitrate radical oxidation accounts for 26 %–52 % of phenolic chemical loss in sunset plumes and in an optically thick plume. Nitrocatechol yields varied between 33 % and 45 %, and NO3 chemistry in BB plumes emitted late in the day is responsible for 72 %–92 % (84 % in an optically thick midday plume) of nitrocatechol formation and controls nitrophenolic formation overall. As a result, overnight nitrophenolic formation pathways account for 56 %±2 % of NOx loss by sunrise the following day. In all but one overnight plume we modeled, there was remaining NOx (13 %–57 %) and BBVOCs (8 %–72 %) at sunrise.
Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric and Stratospheric Biomass Burning Aerosol
Abstract Heterogeneous chemical cycles of pyrogenic nitrogen and halides influence tropospheric ozone and affect the stratosphere during extreme Pyrocumulonimbus (PyroCB) events. We report field‐derived N 2 O 5 uptake coefficients, γ (N 2 O 5 ), and ClNO 2 yields, φ (ClNO 2 ), from two aircraft campaigns observing fresh smoke in the lower and mid troposphere and processed/aged smoke in the upper troposphere and lower stratosphere (UTLS). Derived φ (ClNO 2 ) varied across the full 0–1 range but was typically <0.5 and smallest in a PyroCB (<0.05). Derived γ (N 2 O 5 ) was low in agricultural smoke (0.2–3.6 × 10 −3 ), extremely low in mid‐tropospheric wildfire smoke (0.1 × 10 −3 ), but larger in PyroCB processed smoke (0.7–5.0 × 10 −3 ). Aged biomass burning aerosol in the UTLS had a higher γ (N 2 O 5 ) of 17 × 10 −3 that increased with sulfate and liquid water, but that was 1–2 orders of magnitude lower than values for aqueous sulfuric aerosol used in stratospheric models.
On ultrafast x-ray scattering methods for magnetism
With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and 'magnetic-type' systems, advanced scattering methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which have the potential to seed new directions in this area and present original results from each: pump-probe x-ray scattering with low energy excitation, x-ray photon fluctuation spectroscopy, and ultrafast diffuse x-ray scattering. By combining these experimental techniques with advanced modeling together with machine learning, we describe how the combination of these domains allows for a new understanding in the field of magnetism. Finally, we give an outlook for future areas of investigation and the newly developed instruments which will take us there.
A Comparison of HAART Outcomes between the US Military HIV Natural History Study (NHS) and HIV Atlanta Veterans Affairs Cohort Study (HAVACS)
The Department of Defense (DoD) and the Department of Veterans Affairs (VA) provide comprehensive HIV treatment and care to their beneficiaries with open access and few costs to the patient. Individuals who receive HIV care in the VA have higher rates of substance abuse, homelessness and unemployment than individuals who receive HIV care in the DoD. A comparison between individuals receiving HIV treatment and care from the DoD and the VA provides an opportunity to explore the impact of individual-level characteristics on clinical outcomes within two healthcare systems that are optimized for clinic retention and medication adherence. Data were collected on 1065 patients from the HIV Atlanta VA Cohort Study (HAVACS) and 1199 patients from the US Military HIV Natural History Study (NHS). Patients were eligible if they had an HIV diagnosis and began HAART between January 1, 1996 and June 30, 2010. The analysis examined the survival from HAART initiation to all-cause mortality or an AIDS event. Although there was substantial between-cohort heterogeneity and the 12-year survival of participants in NHS was significantly higher than in HAVACS in crude analyses, this survival disparity was reduced from 21.5% to 1.6% (mortality only) and 26.8% to 4.1% (combined mortality or AIDS) when controlling for clinical and demographic variables. We assessed the clinical outcomes for individuals with HIV from two very similar government-sponsored healthcare systems that reduced or eliminated many barriers associated with accessing treatment and care. After controlling for clinical and demographic variables, both 12-year survival and AIDS-free survival rates were similar for the two study cohorts who have open access to care and medication despite dramatic differences in socioeconomic and behavioral characteristics.
Clinical, demographic and laboratory parameters at HAART initiation associated with decreased post-HAART survival in a U.S. military prospective HIV cohort
Background Although highly active antiretroviral therapy (HAART) has improved HIV survival, some patients receiving therapy are still dying. This analysis was conducted to identify factors associated with increased risk of post-HAART mortality. Methods We evaluated baseline (prior to HAART initiation) clinical, demographic and laboratory factors (including CD4+ count and HIV RNA level) for associations with subsequent mortality in 1,600 patients who began HAART in a prospective observational cohort of HIV-infected U.S. military personnel. Results Cumulative mortality was 5%, 10% and 18% at 4, 8 and 12 years post-HAART. Mortality was highest (6.23 deaths/100 person-years [PY]) in those with ≤ 50 CD4+ cells/mm 3 before HAART initiation, and became progressively lower as CD4+ counts increased (0.70/100 PY with ≥ 500 CD4+ cells/mm 3 ). In multivariate analysis, factors significantly (p < 0.05) associated with post-HAART mortality included: increasing age among those ≥ 40 years (Hazard ratio [HR] = 1.32 per 5 year increase), clinical AIDS events before HAART (HR = 1.93), ≤ 50 CD4+ cells/mm 3 (vs. CD4+ ≥ 500, HR = 2.97), greater HIV RNA level (HR = 1.36 per one log 10 increase), hepatitis C antibody or chronic hepatitis B (HR = 1.96), and HIV diagnosis before 1996 (HR = 2.44). Baseline CD4+ = 51-200 cells (HR = 1.74, p = 0.06), and hemoglobin < 12 gm/dL for women or < 13.5 for men (HR = 1.36, p = 0.07) were borderline significant. Conclusions Although treatment has improved HIV survival, defining those at greatest risk for death after HAART initiation, including demographic, clinical and laboratory correlates of poorer prognoses, can help identify a subset of patients for whom more intensive monitoring, counseling, and care interventions may improve clinical outcomes and post-HAART survival.