Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
77
result(s) for
"Dedecker, Peter"
Sort by:
Orthogonal fluorescent chemogenetic reporters for multicolor imaging
by
Padilla-Parra, Sergi
,
Gautier, Arnaud
,
Moeyaert, Benjamien
in
631/136/334/1874/763
,
631/1647/245
,
631/80/641
2021
Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein–protein interactions by live-cell fluorescence microscopy.
The fluorescent chemogenetic reporters greenFAST and redFAST were engineered by protein engineering. They display orthogonal fluorogen recognition and spectral properties allowing efficient multicolor imaging of proteins in live cells and organisms.
Journal Article
Widely accessible method for superresolution fluorescence imaging of living systems
by
Zhang, Jin
,
Dedecker, Peter
,
Mo, Gary C. H.
in
Biological Sciences
,
Cell Biology - instrumentation
,
Cell membranes
2012
Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment whereas single-molecule-based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment genetically encodable labels, and simple and rapid data acquisition, is capable of providing two-to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging.
Journal Article
Simultaneous readout of multiple FRET pairs using photochromism
by
Sipieter, François
,
Zhang, Jin
,
Dedecker, Peter
in
631/1647/1888/2249
,
631/1647/245/2225
,
639/624/1107/328/2236
2021
Förster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells.
Performing multiple FRET measurements at once can be challenging. Here the authors report a method to discriminate between overlapping FRET pairs, even if the fluorophores display almost identical absorption and emission spectra, based on the photochromism of the donor fluorophores.
Journal Article
Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution
2017
New fluorescent biosensors enable the first super-resolution imaging of enzyme activity in live cells via fluorescence fluctuation increase by contact (FLINC).
Compartmentalized biochemical activities are essential to all cellular processes, but there is no generalizable method to visualize dynamic protein activities in living cells at a resolution commensurate with cellular compartmentalization. Here, we introduce a new class of fluorescent biosensors that detect biochemical activities in living cells at a resolution up to threefold better than the diffraction limit. These 'FLINC' biosensors use binding-induced changes in protein fluorescence dynamics to translate kinase activities or protein–protein interactions into changes in fluorescence fluctuations, which are quantifiable through stochastic optical fluctuation imaging. A protein kinase A (PKA) biosensor allowed us to resolve minute PKA activity microdomains on the plasma membranes of living cells and to uncover the role of clustered anchoring proteins in organizing these activity microdomains. Together, these findings suggest that biochemical activities of the cell are spatially organized into an activity architecture whose structural and functional characteristics can be revealed by these new biosensors.
Journal Article
Actuation enhances patterning in human neural tube organoids
by
Aerts, Stein
,
Finnell, Richard
,
Sampaolesi, Maurilio
in
13/107
,
631/136/756/1446
,
631/1647/2204
2021
Tissues achieve their complex spatial organization through an interplay between gene regulatory networks, cell-cell communication, and physical interactions mediated by mechanical forces. Current strategies to generate in-vitro tissues have largely failed to implement such active, dynamically coordinated mechanical manipulations, relying instead on extracellular matrices which respond to, rather than impose mechanical forces. Here, we develop devices that enable the actuation of organoids. We show that active mechanical forces increase growth and lead to enhanced patterning in an organoid model of the neural tube derived from single human pluripotent stem cells (hPSC). Using a combination of single-cell transcriptomics and immunohistochemistry, we demonstrate that organoid mechanoregulation due to actuation operates in a temporally restricted competence window, and that organoid response to stretch is mediated extracellularly by matrix stiffness and intracellularly by cytoskeleton contractility and planar cell polarity. Exerting active mechanical forces on organoids using the approaches developed here is widely applicable and should enable the generation of more reproducible, programmable organoid shape, identity and patterns, opening avenues for the use of these tools in regenerative medicine and disease modelling applications.
Mechanical forces, along with gene regulatory networks and cell-cell signalling, play an important role in the complex organization of tissues. Here the authors describe devices that actively apply mechanical force to developing neural tube, demonstrating that mechanical forces increase growth and enhance patterning.
Journal Article
Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification
by
Campbell, Robert E.
,
Moeyaert, Benjamien
,
Gielen, Vincent
in
631/1647/1888/2249
,
631/1647/245/2225
,
631/1647/328/2235
2022
Genetically-encoded biosensors based on a single fluorescent protein are widely used to visualize analyte levels or enzymatic activities in cells, though usually to monitor relative changes rather than absolute values. We report photochromism-enabled absolute quantification (PEAQ) biosensing, a method that leverages the photochromic properties of biosensors to provide an absolute measure of the analyte concentration or activity. We develop proof-of-concept photochromic variants of the popular GCaMP family of Ca
2+
biosensors, and show that these can be used to resolve dynamic changes in the absolute Ca
2+
concentration in live cells. We also develop intermittent quantification, a technique that combines absolute aquisitions with fast fluorescence acquisitions to deliver fast but fully quantitative measurements. We also show how the photochromism-based measurements can be expanded to situations where the absolute illumination intensities are unknown. In principle, PEAQ biosensing can be applied to other biosensors with photochromic properties, thereby expanding the possibilities for fully quantitative measurements in complex and dynamic systems.
Biosensors often report relative rather than absolute values. Here the authors report a method that utilises the photochromic properties of biosensors to provide an absolute measure of the analyte concentration or activity: photochromism-enabled absolute quantification (PEAQ) biosensing.
Journal Article
Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions
2016
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min
−1
. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.
Live cell super-resolution imaging requires a high temporal resolution, which remains a challenge. Here the authors combine photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI) to achieve high spatiotemporal resolution and quantitative imaging of focal adhesion dynamics.
Journal Article
SOFI Simulation Tool: A Software Package for Simulating and Testing Super-Resolution Optical Fluctuation Imaging
by
Hofkens, Johan
,
Sharipov, Azat
,
Geissbuehler, Stefan
in
Algorithms
,
Biological properties
,
Biological samples
2016
Super-resolution optical fluctuation imaging (SOFI) allows one to perform sub-diffraction fluorescence microscopy of living cells. By analyzing the acquired image sequence with an advanced correlation method, i.e. a high-order cross-cumulant analysis, super-resolution in all three spatial dimensions can be achieved. Here we introduce a software tool for a simple qualitative comparison of SOFI images under simulated conditions considering parameters of the microscope setup and essential properties of the biological sample. This tool incorporates SOFI and STORM algorithms, displays and describes the SOFI image processing steps in a tutorial-like fashion. Fast testing of various parameters simplifies the parameter optimization prior to experimental work. The performance of the simulation tool is demonstrated by comparing simulated results with experimentally acquired data.
Journal Article
The Persistence-Inducing Toxin HokB Forms Dynamic Pores That Cause ATP Leakage
by
Michiels, Jan
,
Mika, Jacek T.
,
Wilmaerts, Dorien
in
Adenosine Triphosphate - metabolism
,
Antibiotics
,
Asymmetry
2018
Bacterial populations harbor a small fraction of cells that display transient multidrug tolerance. These so-called persister cells are extremely difficult to eradicate and contribute to the recalcitrance of chronic infections. Several signaling pathways leading to persistence have been identified. However, it is poorly understood how the effectors of these pathways function at the molecular level. In a previous study, we reported that the conserved GTPase Obg induces persistence in Escherichia coli via transcriptional upregulation of the toxin HokB. In the present study, we demonstrate that HokB inserts in the cytoplasmic membrane where it forms pores. The pore-forming capacity of the HokB peptide is demonstrated by in vitro conductance measurements on synthetic and natural lipid bilayers, revealing an asymmetrical conductance profile. Pore formation is directly linked to persistence and results in leakage of intracellular ATP. HokB-induced persistence is strongly impeded in the presence of a channel blocker, thereby providing a direct link between pore functioning and persistence. Furthermore, the activity of HokB pores is sensitive to the membrane potential. This sensitivity presumably results from the formation of either intermediate or mature pore types depending on the membrane potential. Taken together, these results provide a detailed view on the mechanistic basis of persister formation through the effector HokB. IMPORTANCE There is increasing awareness of the clinical importance of persistence. Indeed, persistence is linked to the recalcitrance of chronic infections, and evidence is accumulating that persister cells constitute a pool of viable cells from which resistant mutants can emerge. Unfortunately, persistence is a poorly understood process at the mechanistic level. In this study, we unraveled the pore-forming activity of HokB in E. coli and discovered that these pores lead to leakage of intracellular ATP, which is correlated with the induction of persistence. Moreover, we established a link between persistence and pore activity, as the number of HokB-induced persister cells was strongly reduced using a channel blocker. The latter opens opportunities to reduce the number of persister cells in a clinical setting. There is increasing awareness of the clinical importance of persistence. Indeed, persistence is linked to the recalcitrance of chronic infections, and evidence is accumulating that persister cells constitute a pool of viable cells from which resistant mutants can emerge. Unfortunately, persistence is a poorly understood process at the mechanistic level. In this study, we unraveled the pore-forming activity of HokB in E. coli and discovered that these pores lead to leakage of intracellular ATP, which is correlated with the induction of persistence. Moreover, we established a link between persistence and pore activity, as the number of HokB-induced persister cells was strongly reduced using a channel blocker. The latter opens opportunities to reduce the number of persister cells in a clinical setting.
Journal Article
Mechanistic investigation of mEos4b reveals a strategy to reduce track interruptions in sptPALM
2019
Green-to-red photoconvertible fluorescent proteins repeatedly enter dark states, causing interrupted tracks in single-particle-tracking localization microscopy (sptPALM). We identified a long-lived dark state in photoconverted mEos4b that results from isomerization of the chromophore and efficiently absorbs cyan light. Addition of weak 488-nm light swiftly reverts this dark state to the fluorescent state. This strategy largely eliminates slow blinking and enables the recording of longer tracks in sptPALM with minimum effort.
Journal Article