Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Deeti, Sudhakar"
Sort by:
Desert ants (Melophorus bagoti) oscillate and scan more in navigation when the visual scene changes
Solitarily foraging ants learn to navigate between important locations by comparing their current view with memorized scenes along a familiar route. As desert ants, in particular, travel between their nest and a food source, they establish stable and visually guided routes that guide them without relying on trail pheromones. We investigated how changes in familiar visual scenes affect the navigation of the red honey ant ( Melophorus bagoti ). In Experiment 1, ants were trained to follow a one-way diamond-shaped path to forage and return home. We manipulated scene familiarity by adding a board on their homebound route just before the nest. In Experiment 2, ants were trained to travel a straight path from their nest to a feeder, and we removed the prominent landmarks on the route after they had established a stable route. We predicted that these scene changes would cause the ants to deviate from their usual straight paths, slow down, scan more, and increase their lateral oscillations to gather additional information. Our findings showed that when the familiar scene was changed, ants oscillated more, slowed their speed, and increased scanning bouts, indicating a shift from exploiting known information to more actively exploring and learning new visual cues. These results suggest that scene familiarity plays a crucial role in ant navigation, and changes in their visual environment lead to distinct behavioral adaptations aimed at learning about the new cues.
Nest excavators’ learning walks in the Australian desert ant Melophorus bagoti
The Australian red honey ant, Melophorus bagoti , stands out as the most thermophilic ant in Australia, engaging in all outdoor activities during the hottest periods of the day during summer months. This species of desert ants often navigates by means of path integration and learning landmark cues around the nest. In our study, we observed the outdoor activities of M. bagoti workers engaged in nest excavation, the maintenance of the nest structure, primarily by taking excess sand out of the nest. Before undertaking nest excavation, the ants conducted a single exploratory walk. Following their initial learning expedition, these ants then engaged in nest excavation activities. Consistent with previous findings on pre-foraging learning walks, after just one learning walk, the desert ants in our study demonstrated the ability to return home from locations 2 m away from the nest, although not from locations 4 m away. These findings indicate that even for activities like dumping excavated sand within a range of 5–10 cm outside the nest, these ants learn and utilize the visual landmark panorama around the nest.
Desert Ant (Melophorus bagoti) Dumpers Learn from Experience to Improve Waste Disposal and Show Spatial Fidelity
The Central Australian red honey-pot ant Melophorus bagoti maintains non-cryptic ground-nesting colonies in the semi-desert habitat, performing all the activities outside the nest during the hottest periods of summer days. These ants rely on path integration and view-based cues for navigation. They manage waste by taking out unwanted food, dead nestmates, and some other wastes, typically depositing such items at distances > 5 m from the nest entrance, a process called dumping. We found that over multiple runs, dumpers headed in the same general direction, showing sector fidelity. Experienced ants dumped waste more efficiently than naive ants. Naive individuals, lacking prior exposure to the outdoor environment around the nest, exhibited much scanning and meandering during waste disposal. In contrast, experienced ants dumped waste with straighter paths and a notable absence of scanning behaviour. Furthermore, experienced dumpers deposited waste at a greater distance from the nest compared to their naive counterparts. We also investigated the navigational knowledge of naive and experienced dumpers by displacing them 2 m away from the nest. Naive dumpers were not oriented towards the nest in their initial trajectory at any of the 2 m test locations, whereas experienced dumpers were oriented towards the nest at all test locations. Naive dumpers were nest-oriented as a group, however, at the test location nearest to where they dumped their waste. These differences suggest that in red honey ants, learning supports waste disposal, with dumping being refined through experience. Dumpers gain greater spatial knowledge through repeated runs outside the nest, contributing to successful homing behaviour.
The effect of spatially restricted experience on extrapolating learned views in desert ants, Melophorus bagoti
Desert ants are known for learning walks at the beginning of their foraging life, during which they learn terrestrial cues of the panorama and surrounding landmarks around their nest. Foragers retain memories of the visual cues of the nest panorama learned during the pre-foraging trials. When away from the nest, they can compare these stored views with their current vision to return to their nest. In this study we investigated whether spatially restricted foraging ants can extrapolate their memory of visual cues to unexperienced sites. We carried out two conditions to examine whether desert ants extrapolate learned views. In the first condition, naïve ants of Melophorus bagoti were restricted to a nest arena 1 m in radius with a 10 cm high wall (wall condition) for 3 days, then released at distant locations on the fourth day and focal individuals return trips were recorded. In the second condition, a 10 cm sunken metallic barrier was constructed around the nest (moat condition) and the restricted foragers that viewed the unrestricted visual panorama around the 1 m-radius nest arena were then displaced away from the nest as in the wall condition. In the wall condition, most of the ants were unable to orient in the correct heading towards the home direction. In the moat condition ants were able to correctly orient to the nest from displacement sites up to 8 m from the nest. We conclude that while travelling to unfamiliar sites, M. bagoti ants can extrapolate views learned from foraging in a restricted area when given unrestricted views.
Inter-turn intervals in Paramecium caudatum display an exponential distribution
In navigating to a better location, mobile organisms in diverse taxa change directions of travel occasionally, including bacteria, archaea, single-celled eukaryotes, and small nematode worms such as Caenorhabditis elegans. In perhaps the most common form of goal-orientated movement, the rate of such turns is adjusted in all these taxa to ascend (or descend) a chemical gradient. Basically, the rate of turns is reduced when the movement results in better conditions. In the bacterium Escherichia coli and in C. elegans, the turns are generated by random-rate processes, in which the probability of a turn occurring is constant at every moment. This is evidenced by a distribution of inter-turn intervals that has an exponential distribution. For the first time, we examined the distribution of inter-turn intervals in the single-celled eukaryote, Paramecium caudatum, in a class exercise for first-year university students. We found clear evidence for an exponential distribution of inter-turn intervals, implying a random-rate process in generating turns in Paramecium. The exercise also shows that university laboratory classes can be used to generate scientific data to address research questions whose answers are as yet unknown.
Scanning behaviour in ants: an interplay between random-rate processes and oscillators
At the start of a journey home or to a foraging site, ants often stop, interrupting their forward movement, turn on the spot a number of times, and fixate in different directions. These scanning bouts are thought to provide visual information for choosing a path to travel. The temporal organization of such scanning bouts has implications about the neural organisation of navigational behaviour. We examined (1) the temporal distribution of the start of such scanning bouts and (2) the dynamics of saccadic body turns and fixations that compose a scanning bout in Australian desert ants, Melophorus bagoti, as they came out of a walled channel onto open field at the start of their homeward journey. Ants were caught when they neared their nest and displaced to different locations to start their journey home again. The observed parameters were mostly similar across familiar and unfamiliar locations. The turning angles of saccadic body turning to the right or left showed some stereotypy, with a peak just under 45°. The direction of such saccades appears to be determined by a slow oscillatory process as described in other insect species. In timing, however, both the distribution of inter-scanning-bout intervals and individual fixation durations showed exponential characteristics, the signature for a random-rate or Poisson process. Neurobiologically, therefore, there must be some process that switches behaviour (starting a scanning bout or ending a fixation) with equal probability at every moment in time. We discuss how chance events in the ant brain that occasionally reach a threshold for triggering such behaviours can generate the results.
Inhibition of the Pim1 Oncogene Results in Diminished Visual Function
Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3-5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function.
What view information is most important in the homeward navigation of an Australian bull ant, Myrmecia midas?
Many insects orient by comparing current panoramic views of their environment to memorised views. We tested the navigational abilities of night-active Myrmecia midas foragers while we blocked segments of their visual panorama. Foragers failed to orient homewards when the front view, lower elevations, entire terrestrial surround, or the full panorama was blocked. Initial scanning increased whenever the visual panorama was blocked but scanning only increased along the rest of the route when the front, back, higher, or lower elevations were blocked. Ants meandered more when the front, the back, or the higher elevations were obscured. When everything except the canopy was blocked, the ants were quick and direct, but moved in random directions, as if to escape. We conclude that a clear front view, or a clear lower panorama is necessary for initial homeward headings. Furthermore, the canopy is neither necessary nor sufficient for homeward initial heading, and the back and upper segments of views, while not necessary, do make finding home easier. Discrepancies between image analysis and ant behaviour when the upper and lower views were blocked suggests that ants are selective in what portions of the scene they attend to or learn.
Heavy rainfall induced colony fission and nest relocation in nocturnal bull ants (Myrmecia midas)
In recent years the bull ant Myrmecia midas Clark, 1951, has attracted attention for its impressive visual navigation during its nocturnal activity. Still, a basic understanding of this species’ ecology is lacking. Nest relocation and colony fissions are rarely observed and largely undocumented in M. midas colonies. In the current study, we quantified the nest-relocation and colony-splitting behaviour of suburban populations of M. midas in response to flooding in its habitat, caused by record rainfalls in eastern Australia in 2022. The flooding caused the destruction of nest chambers and disrupted colony activities. We documented nine relocations of the fifty observed colonies with another four split into 12 different colonies. Most relocations occurred a few days after one period of especially heavy rains. We collected several characteristics of these relocations: the distance of a nest from the nearest tree, the elevation of the nest above ground level and the diameter of the nest entrance, with all of these metrics predicting whether a colony moved after heavy rains. Moreover, we conducted excavations of some abandoned colonies, uncovering evidence of an internal collapse of nest chambers due to heavy flooding, which likely induced the nest relocation and colony fission in M. midas . In normal weather, we have not observed any colony relocating, suggesting that moving may bear a fitness cost.
Resolving conflict between aversive and appetitive learning of views: how ants shift to a new route during navigation
Ants store and recall views associated with foraging success, facilitating future foraging journeys. Negative views are also learned, but instead prompt avoidance behaviors such as turning away. However, little is known about the aversive view’s role in navigation, the effect of cue conflict, or the contextual relationship between learning and recalling. In this study, we tested Myrmecia midas’ capacity for aversive learning of views either independently of or in conflict with appetitive events. We either captured and released foragers when reaching a location or let them pass unhindered. After a few journeys, captured foragers exhibited aversive learning by circumventing the capture location and increasing both meandering and scanning. Ants that experienced foraging-appetitive and homing-aversive events on their journeys exhibited lower rates of avoidance behavior and scans than those experiencing aversive events in both outbound and homebound journeys. The foraging-aversive and homing-aversive ants exhibited similar levels of avoidance and scanning as those that experienced the foraging-aversive and homing-appetitive. We found that foragers showed evidence of context specificity in their scanning behavior, but not in other measures of aversive learning. The foragers did not increase their meandering and scans while approaching the views associated with aversive events. In addition to shedding light on the role of aversive views in navigation, our finding has important implications for understanding the learning mechanisms triggered by handling animals.