Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Delene, David J"
Sort by:
Precipitation Growth Processes in the Comma-Head Region of the 7 February 2020 Northeast Snowstorm: Results from IMPACTS
On 7 February 2020, precipitation within the comma-head region of an extratropical cyclone was sampled remotely and in situ by two research aircraft, providing a vertical cross section of microphysical observations and fine-scale radar measurements. The sampled region was stratified vertically by distinct temperature layers and horizontally into a stratiform region on the west side, and a region of elevated convection on the east side. In the stratiform region, precipitation formed near cloud top as side-plane, polycrystalline, and platelike particles. These habits occurred through cloud depth, implying that the cloud-top region was the primary source of particles. Almost no supercooled water was present. The ice water content within the stratiform region showed an overall increase with depth between the aircraft flight levels, while the total number concentration slightly decreased, consistent with growth by vapor deposition and aggregation. In the convective region, new particle habits were observed within each temperature-defined layer along with detectable amounts of supercooled water, implying that ice particle formation occurred in several layers. Total number concentration decreased from cloud top to the −8°C level, consistent with particle aggregation. At temperatures > −8°C, ice particle concentrations in some regions increased to >100 L −1 , suggesting secondary ice production occurred at lower altitudes. WSR-88D reflectivity composites during the sampling period showed a weak, loosely organized banded feature. The band, evident on earlier flight legs, was consistent with enhanced vertical motion associated with frontogenesis, and at least partial melting of ice particles near the surface. A conceptual model of precipitation growth processes within the comma head is presented.
Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites
Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in serosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations.
Multi-Campaign Ship and Aircraft Observations of Marine Cloud Condensation Nuclei and Droplet Concentrations
In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosolcloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates.
Factors affecting precipitation formation and precipitation susceptibility of marine stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast Atlantic
Aerosol–cloud–precipitation interactions (ACIs) provide the greatest source of uncertainties in predicting changes in Earth's energy budget due to poor representation of marine stratocumulus and the associated ACIs in climate models. Using in situ data from 329 cloud profiles across 24 research flights from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign in September 2016, August 2017, and October 2018, it is shown that contact between above-cloud biomass burning aerosols and marine stratocumulus over the Southeast Atlantic Ocean was associated with precipitation suppression and a decrease in the precipitation susceptibility (So) to aerosols. The 173 “contact” profiles with aerosol concentration (Na) greater than 500 cm−3 within 100 m above cloud tops had a 50 % lower precipitation rate (Rp) and a 20 % lower So, on average, compared to 156 “separated” profiles with Na less than 500 cm−3 up to at least 100 m above cloud tops. Contact and separated profiles had statistically significant differences in droplet concentration (Nc) and effective radius (Re) (95 % confidence intervals from a two-sample t test are reported). Contact profiles had 84 to 90 cm−3 higher Nc and 1.4 to 1.6 µm lower Re compared to separated profiles. In clean boundary layers (below-cloud Na less than 350 cm−3), contact profiles had 25 to 31 cm−3 higher Nc and 0.2 to 0.5 µm lower Re. In polluted boundary layers (below-cloud Na exceeding 350 cm−3), contact profiles had 98 to 108 cm−3 higher Nc and 1.6 to 1.8 µm lower Re. On the other hand, contact and separated profiles had statistically insignificant differences between the average liquid water path, cloud thickness, and meteorological parameters like surface temperature, lower tropospheric stability, and estimated inversion strength. These results suggest the changes in cloud microphysical properties were driven by ACIs rather than meteorological effects, and adjustments to existing relationships between Rp and Nc in model parameterizations should be considered to account for the role of ACIs.
In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean
In situ cloud probe data from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign were used to estimate the effective radius (Re), cloud optical thickness (τ), and cloud droplet concentration (Nc) for marine stratocumulus over the southeast Atlantic Ocean. The in situ Re, τ, and Nc were compared with co-located Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of Re and τ and MODIS-derived Nc. For 145 cloud profiles, a MODIS retrieval was co-located with in situ data with a time gap of less than 1 h. On average, the MODIS Re and τ (11.3 µm and 11.7) were 1.6 µm and 2.3 higher than the in situ Re and τ with Pearson's correlation coefficients (R) of 0.77 and 0.73, respectively. The average MODIS Nc (151.5 cm−3) was within 1 cm−3 of the average in situ Nc with an R of 0.90. The 145 cloud profiles were classified into 67 contact profiles where an aerosol concentration (Na) greater than 500 cm−3 was sampled within 100 m above cloud tops and 78 separated profiles where Na less than 500 cm−3 was sampled up to 100 m above cloud tops. Contact profiles had a higher in situ Nc (by 88 cm−3), higher τ (by 2.5), and lower in situ Re (by 2.2 µm) compared to separated profiles. These differences were associated with aerosol–cloud interactions (ACI), and MODIS estimates of the differences were within 5 cm−3, 0.5, and 0.2 µm of the in situ estimates when profiles with MODIS Re>15 µm or MODIS τ>25 were removed. The agreement between MODIS and in situ estimates of changes in Re, τ, and Nc associated with ACI was driven by small biases in MODIS retrievals of cloud properties relative to in situ measurements across different aerosol regimes. Thus, when combined with estimates of aerosol location and concentration, MODIS retrievals of marine stratocumulus cloud properties over the southeast Atlantic can be used to study ACI over larger domains and longer timescales than possible using in situ data.
Impact of the variability in vertical separation between biomass burning aerosols and marine stratocumulus on cloud microphysical properties over the Southeast Atlantic
Marine stratocumulus cloud properties over the Southeast Atlantic Ocean are impacted by contact between above-cloud biomass burning aerosols and cloud tops. Different vertical separations (0 to 2000 m) between the aerosol layer and cloud tops were observed on six research flights in September 2016 during the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign. There were 30 contact profiles, where an aerosol layer with aerosol concentration (Na) > 500 cm−3 was within 100 m of cloud tops, and 41 separated profiles, where the aerosol layer with Na > 500 cm−3 was located more than 100 m above cloud tops. For contact profiles, the average cloud droplet concentration (Nc) in the cloud layer was up to 68 cm−3 higher, the effective radius (Re) up to 1.3 µm lower, and the liquid water content (LWC) within 0.01 g m−3 compared to separated profiles. Free-tropospheric humidity was higher in the presence of biomass burning aerosols, and contact profiles had a smaller decrease in humidity (and positive buoyancy) across cloud tops with higher median above-cloud Na (895 cm−3) compared to separated profiles (30 cm−3). Due to droplet evaporation from entrainment mixing of warm, dry free-tropospheric air into the clouds, the median Nc and LWC for contact profiles decreased with height by 21 and 9 % in the top 20 % of the cloud layer. The impact of droplet evaporation was stronger during separated profiles as a greater decrease in humidity (and negative buoyancy) across cloud tops led to greater decreases in median Nc (30 %) and LWC (16 %) near cloud tops. Below-cloud Na was sampled during 61 profiles, and most contact profiles (20 out of 28) were within high-Na (> 350 cm−3) boundary layers, while most separated profiles (22 out of 33) were within low-Na (< 350 cm−3) boundary layers. Although the differences in below-cloud Na were statistically insignificant, contact profiles within low-Na boundary layers had up to 34.9 cm−3 higher Nc compared to separated profiles. This is consistent with a weaker impact of droplet evaporation in the presence of biomass burning aerosols within 100 m above cloud tops. For contact profiles within high-Na boundary layers, the presence of biomass burning aerosols led to higher below-cloud Na (up to 70.5 cm−3) and additional droplet nucleation above the cloud base along with weaker droplet evaporation. Consequently, the contact profiles in high-Na boundary layers had up to 88.4 cm−3 higher Nc compared to separated profiles. These results motivate investigations of aerosol–cloud–precipitation interactions over the Southeast Atlantic since the changes in Nc and Re induced by the presence of above-cloud biomass burning aerosols are likely to impact precipitation rates, liquid water path, and cloud fraction, and modulate closed-to-open-cell transitions.
Radar Retrieval Evaluation and Investigation of Dendritic Growth Layer Polarimetric Signatures in a Winter Storm
This study evaluates ice particle size distribution and aspect ratio φ Multi-Radar Multi-Sensor (MRMS) dualpolarization radar retrievals through a direct comparison with two legs of observational aircraft data obtained during a winter storm case from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. In situ cloud probes, satellite, and MRMS observations illustrate that the often-observed K dp and Z DR enhancement regions in the dendritic growth layer can either indicate a local number concentration increase of dry ice particles or the presence of ice particles mixed with a significant number of supercooled liquid droplets. Relative to in situ measurements, MRMS retrievals on average underestimated mean volume diameters by 50% and overestimated number concentrations by over 100%. IWC retrievals using Z DR and K dp within the dendritic growth layer were minimally biased relative to in situ calculations where retrievals yielded -2% median relative error for the entire aircraft leg. Incorporating φ retrievals decreased both the magnitude and spread of polarimetric retrievals below the dendritic growth layer. While φ radar retrievals suggest that observed dendritic growth layer particles were nonspherical (0.1 ≤ φ ≤ 0.2), in situ projected aspect ratios, idealized numerical simulations, and habit classifications from cloud probe images suggest that the population mean φ was generally much higher. Coordinated aircraft radar reflectivity with in situ observations suggests that the MRMS systematically underestimated reflectivity and could not resolve local peaks in mean volume diameter sizes. These results highlight the need to consider particle assumptions and radar limitations when performing retrievals.
RADAR DETECTION OF INDIVIDUAL RAINDROPS
Descriptions of the experimental design and research highlights obtained from a series of four multiagency field projects held near Cape Canaveral, Florida, are presented. The experiments featured a 3 MW, dual-polarization, C-band Doppler radar that serves in a dual capacity as both a precipitation and cloud radar. This duality stems from a combination of the radar’s high sensitivity and extremely smallresolution volumes produced by the narrow 0.22° beamwidth and the 0.543 m along-range resolution. Experimental highlights focus on the radar’s real-time aircraft tracking capability as well as the finescale ref lectivity and eddy structure of a thin nonprecipitating stratus layer. Examples of precipitating storm systems focus on the analysis of the distinctive and nearly linear radar reflectivity signatures (referred to as “streaks”) that are caused as individual hydrometeors traverse the narrow radar beam. Each streak leaves a unique radar reflectivity signature that is analyzed with regard to estimating the underlying particle properties such as size, fall speed, and oscillation characteristics. The observed along-streak reflectivity oscillations are complex and discussed in terms of diameter-dependent drop dynamics (oscillation frequency and viscous damping time scales) as well as radar-dependent factors governing the near-field Fresnel radiation pattern and inferred drop–drop interference.
Airborne data processing and analysis software package
The practice of conducting quality control and quality assurance in the construction of data sets is often an overlooked and underestimated task of many research projects in the Earth Sciences. The development of software to effectively process and quickly analyze measurements is a critical aspect of a research project. An evolutionary approach has been used at the University of North Dakota to develop and implement software to process and analyze airborne measurements. Development over the past eight years has resulted in a collection of software named the Airborne Data Processing and Analysis (ADPAA) package which has been published as an open source project on Source Forge. The ADPAA package is intended to fully automate data processing while incorporating the concept of missing value codes and levels of data processing. At each data level, ADPAA utilizes a standard ASCII file format to store measurements from individual instruments into separate files. After all data levels have been processed, a summary file containing parameters of scientific interest for the field project is created for each aircraft flight. All project information is organized into a standard directory structure. ADPAA contains several tools that facilitate quality control procedures conducted on instruments during field projects and laboratory testing. Each quality control procedure is designed to ensure proper instrument performance and hence the validity of the instrument’s measurement. Data processing by ADPAA allows edit files to be created that are automatically used to insert missing value codes into a time period that had instrument problems. The creation of edit files is typically done after the completion of a field project when scientists are performing quality assurance of the data set. Since data processing is automatic, preliminary data can be created and analyzed within hours of an aircraft flight and a complete field project data set can be reprocessed many times during the quality assurance process. Once a final data set has been created, ADPAA provides several tools for visualization and analysis. In addition to aircraft data, ADPAA can be used on any data set that is based on time series measurements. The concepts illustrated by ADPAA and components of ADPAA, such as the Cplot visualization tool, are applicable to areas of Earth Science that work with time series measurements.