Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Deliyanni, Eleni"
Sort by:
Mercury(II) Removal with Modified Magnetic Chitosan Adsorbents
2013
Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II) removal from aqueous solutions. The one chitosan adsorbent (CS) is only cross–linked with glutaraldehyde, while the other (CSm), which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe3O4). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG, DTA, VSM, swelling tests). The adsorption evaluation was done studying various parameters as the effect of pH (optimum value 5 for adsorption and 2 for desorption), contact time (fitting to pseudo–first, –second order and Elovich equations), temperature (isotherms at 25, 45, 65 °C), in line with a brief thermodynamic analysis (ΔG0 < 0, ΔH0 > 0, ΔS0 > 0). The maximum adsorption capacity (fitting with Langmuir and Freundlich model) of CS and CSm at 25 °C was 145 and 152 mg/g, respectively. The reuse ability of the adsorbents prepared was confirmed with sequential cycles of adsorption-desorption.
Journal Article
Metal Organic Frameworks: Synthesis and Application
2020
The concept of metal-organic frameworks (MOFs) was first introduced in 1990; nowadays they are among the most promising novel materials. MOFs belong to a new class of crystalline materials that consist of coordination bonds between metal clusters (e.g., metal-carboxylate clusters and metal-azolate clusters), metal atoms, or rod-shaped clusters and multidentate organic linkers that contain oxygen or nitrogen donors (like carboxylates, azoles, nitriles, etc.); thus, a three-dimensional structure is formed [...].
Journal Article
Magnetic Solid-Phase Extraction of Organic Compounds Based on Graphene Oxide Nanocomposites
by
Rosenberg, Erwin
,
Deliyanni, Eleni
,
Manousi, Natalia
in
biological samples
,
Carbon
,
Chromatography
2020
Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp2-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions. Therefore, functionalization with magnetic nanoparticles is performed in order to prepare a magnetic GO nanocomposite that combines the sufficient adsorption capacity of graphene oxide and the convenience of magnetic separation. Moreover, the magnetic material can be further functionalized with different groups to prevent aggregation and extends its potential application. Until today, a plethora of magnetic GO hybrid materials have been synthesized and successfully employed for the magnetic solid-phase extraction of organic compounds from environmental, agricultural, biological, and food samples. The developed GO nanocomposites exhibit satisfactory stability in aqueous solutions, as well as sufficient surface area. Thus, they are considered as an alternative to conventional sorbents by enriching the analytical toolbox for the analysis of trace organic compounds.
Journal Article
Metal Organic Frameworks as Desulfurization Adsorbents of DBT and 4,6-DMDBT from Fuels
by
Hosseini-Bandegharaei, Ahmad
,
Kampouraki, Zoi-Christina
,
Deliyanni, Eleni A.
in
Adsorption
,
Fossil Fuels - analysis
,
Metal-Organic Frameworks
2019
Ultradeep desulfurization of fuels is a method of enormous demand due to the generation of harmful compounds during the burning of sulfur-containing fuels, which are a major source of environmental pollution. Among the various desulfurization methods in application, adsorptive desulfurization (ADS) has low energy demand and is feasible to be employed at ambient conditions without the addition of chemicals. The most crucial factor for ADS application is the selection of the adsorbent, and, currently, a new family of porous materials, metal organic frameworks (MOFs), has proved to be very effective towards this direction. In the current review, applications of MOFs and their functionalized composites for ADS are presented and discussed, as well as the main desulfurization mechanisms reported for the removal of thiophenic compounds by various frameworks. Prospective methods regarding the further improvement of MOF’s desulfurization capability are also suggested.
Journal Article
Sample Preparation Using Graphene-Oxide-Derived Nanomaterials for the Extraction of Metals
by
Rosenberg, Erwin
,
Deliyanni, Eleni A.
,
Manousi, Natalia
in
biological samples
,
environmental samples
,
food samples
2020
Graphene oxide is a compound with a form similar to graphene, composed of carbon atoms in a sp2 single-atom layer of a hybrid connection. Due to its significant surface area and its good mechanical and thermal stability, graphene oxide has a plethora of applications in various scientific fields including heterogenous catalysis, gas storage, environmental remediation, etc. In analytical chemistry, graphene oxide has been successfully employed for the extraction and preconcentration of organic compounds, metal ions, and proteins. Since graphene oxide sheets are negatively charged in aqueous solutions, the material and its derivatives are ideal sorbents to bind with metal ions. To date, various graphene oxide nanocomposites have been successfully synthesized and evaluated for the extraction and preconcentration of metal ions from biological, environmental, agricultural, and food samples. In this review article, we aim to discuss the application of graphene oxide and functionalized graphene oxide nanocomposites for the extraction of metal ions prior to their determination via an instrumental analytical technique. Applications of ionic liquids and deep eutectic solvents for the modification of graphene oxide and its functionalized derivatives are also discussed.
Journal Article
Applications of Metal-Organic Frameworks in Food Sample Preparation
by
Deliyanni, Eleni A.
,
Samanidou, Victoria F.
,
Manousi, Natalia
in
Aluminum
,
Analytical chemistry
,
Antibiotics
2018
Food samples such as milk, beverages, meat and chicken products, fish, etc. are complex and demanding matrices. Various novel materials such as molecular imprinted polymers (MIPs), carbon-based nanomaterials carbon nanotubes, graphene oxide and metal-organic frameworks (MOFs) have been recently introduced in sample preparation to improve clean up as well as to achieve better recoveries, all complying with green analytical chemistry demands. Metal-organic frameworks are hybrid organic inorganic materials, which have been used for gas storage, separation, catalysis and drug delivery. The last few years MOFs have been used for sample preparation of pharmaceutical, environmental samples and food matrices. Due to their high surface area MOFs can be used as adsorbents for the development of sample preparation techniques of food matrices prior to their analysis with chromatographic and spectrometric techniques with great performance characteristics.
Journal Article
Synthesis of Graphene Oxide Based Sponges and Their Study as Sorbents for Sample Preparation of Cow Milk Prior to HPLC Determination of Sulfonamides
by
Maggira, Martha
,
Deliyanni, Eleni A.
,
Samanidou, Victoria F.
in
Adsorption
,
Antibiotics
,
Carbon
2019
In the present study, a novel, simple, and fast sample preparation technique is described for the determination of four sulfonamides (SAs), namely Sulfathiazole (STZ), sulfamethizole (SMT), sulfadiazine (SDZ), and sulfanilamide (SN) in cow milk prior to HPLC. This method takes advantage of a novel material that combines the extractive properties of graphene oxide (GO) and the known properties of common polyurethane sponge (PU) and that makes sample preparation easy, fast, cheap and efficient. The PU-GO sponge was prepared by an easy and fast procedure and was characterized with FTIR spectroscopy. After the preparation of the sorbent material, a specific extraction protocol was optimized and combined with HPLC-UV determination could be applied for the sensitive analysis of trace SAs in milk. The proposed method showed good linearity while the coefficients of determination (R2) were found to be high (0.991–0.998). Accuracy observed was within the range 90.2–112.1% and precision was less than 12.5%. Limit of quantification for all analytes in milk was 50 μg kg−1. Furthermore, the PU-GO sponge as sorbent material offered a very clean extract, since no matrix effect was observed.
Journal Article
On the use of metal-organic frameworks for the extraction of organic compounds from environmental samples
by
Deliyanni, Eleni A.
,
Manousi, Natalia
,
Zachariadis, George A.
in
adsorbents
,
Analytical chemistry
,
Aquatic Pollution
2021
The determination of trace metals and organic contaminants in environmental samples, such as water, air, soil, and sediment, is until today a challenging process for the analytical chemistry. Metal-organic frameworks (MOFs) are novel porous nanomaterials that are composed of metal ions and an organic connector. These materials are gaining more and more attention due to their superior characteristics, such as high surface area, tunable pore size, mechanical and thermal stability, luminosity, and charge transfer ability between metals and ligands. Among the various applications of MOFs are gas storage, separation, catalysis, and drug delivery. Recently, MOFs have been successfully introduced in the field of sample preparation for analytical chemistry and they have been used for sample pretreatment of various matrices. This review focuses on the applications of MOFs as novel adsorbents for the extraction of organic compounds from environmental samples.
Journal Article
Magnetic Graphene Oxide: Effect of Preparation Route on Reactive Black 5 Adsorption
by
Deliyanni, Eleni
,
Kalogirou, Orestis
,
Travlou, Nikolina
in
Adsorbents
,
Adsorption
,
Aqueous solutions
2013
In this study, the effect of preparation route of magnetic graphene oxide (mGO) on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of mGO was achieved both with (i) impregnation method (mGOi nanoparticles), and (ii) co-precipitation (mGOp nanoparticles). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved revealing many possible interactions/forces of dye-composite system. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic nanocomposites. The adsorption evaluation of the magnetic nanoparticles presented higher adsorption capacity of mGOp derivative (188 mg/g) and lower of mGOi (164 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔH0, ΔG0 and ΔS0).
Journal Article
Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides
by
Gallios, George
,
Tolkou, Athanasia
,
Katsoyiannis, Ioannis
in
Activated carbon
,
Adsorption
,
aluminum oxide
2017
The presence of arsenic in water supplies is a major problem for public health and still concerns large parts of population in Southeast Asia, Latin America and Europe. Removal of arsenic is usually accomplished either by coagulation with iron salts or by adsorption with iron oxides or activated alumina. However, these materials, although very efficient for arsenic, normally do not remove other undesirable constituents from waters, such as chlorine and organo-chlorine compounds, which are the results of water chlorination. Activated carbon has this affinity for organic compounds, but does not remove arsenic efficiently. Therefore, in the present study, iron modified activated carbons are investigated as alternative sorbents for the removal of arsenic(V) from aqueous solutions. In addition, modified activated carbons with magnetic properties can easily be separated from the solutions. In the present study, a simple and efficient method was used for the preparation of magnetic Fe3(Mn2+)O4 (M:Fe and/or Mn) activated carbons. Activated carbons were impregnated with magnetic precursor solutions and then calcinated at 400 °C. The obtained carbons were characterized by X-ray diffraction (XRD), nitrogen adsorption isotherms, scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements. Their adsorption performance for As(V) was evaluated. The iron impregnation presented an increase in As(V) maximum adsorption capacity (Qmax) from about 4 mg g−1 for the raw carbon to 11.05 mg g−1, while Mn incorporation further increased the adsorption capacity at 19.35 mg g−1.
Journal Article