Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
38 result(s) for "Dellafiora, Luca"
Sort by:
Modeling the Anti-Adhesive Role of Punicalagin Against Listeria Monocytogenes from the Analysis of the Interaction Between Internalin A and E-Cadherin
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational pipeline envisioned to identify the molecular determinants for the recognition between the bacterial protein internalin A (InlA) and the human E-cadherin (Ecad), which is the first step leading to internalization. This pipeline consists of molecular docking and extended atomistic molecular dynamics simulations to identify key interaction clusters between InlA and Ecad. It exploits this information in the screening of chemical libraries of natural compounds that might competitively interact with InIA and hence impede the formation of the InIA–Ecad complex. This strategy was effective in providing a molecular model for the anti-adhesive activity of punicalagin and disclosed two natural phenolic compounds with a similar interaction pattern. Besides elucidating key aspects of the mutual recognition between InIA and Ecad, this study provides a molecular basis about the mechanistic underpinnings of the anti-adhesive action of punicalagin that enable application against L. monocytogenes.
Forthcoming Challenges in Mycotoxins Toxicology Research for Safer Food—A Need for Multi-Omics Approach
The presence of mycotoxins in food represents a severe threat for public health and welfare, and poses relevant research challenges in the food toxicology field. Nowadays, food toxicologists have to provide answers to food-related toxicological issues, but at the same time they should provide the appropriate knowledge in background to effectively support the evidence-based decision-making in food safety. Therefore, keeping in mind that regulatory actions should be based on sound scientific findings, the present opinion addresses the main challenges in providing reliable data for supporting the risk assessment of foodborne mycotoxins.
Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and Other Xenobiotics of Food Origin: Current Scenario and Future Perspectives
Mycotoxins are low-molecular weight compounds produced by diverse genera of molds that may contaminate food and feed threatening the health of humans and animals. Recent findings underline the importance of studying the combined occurrence of multiple mycotoxins and the relevance of assessing the toxicity their simultaneous exposure may cause in living organisms. In this context, for the first time, this work has critically reviewed the most relevant data concerning the occurrence and toxicity of mycotoxins produced by Alternaria spp., which are among the most important emerging risks to be assessed in food safety, alone or in combination with other mycotoxins and bioactive food constituents. According to the literature covered, multiple Alternaria mycotoxins may often occur simultaneously in contaminated food, along with several other mycotoxins and food bioactives inherently present in the studied matrices. Although the toxicity of combinations naturally found in food has been rarely assessed experimentally, the data collected so far, clearly point out that chemical mixtures may differ in their toxicity compared to the effect of toxins tested individually. The data presented here may provide a solid foothold to better support the risk assessment of Alternaria mycotoxins highlighting the actual role of chemical mixtures on influencing their toxicity.
Toxicodynamics of Mycotoxins in the Framework of Food Risk Assessment—An In Silico Perspective
Mycotoxins severely threaten the health of humans and animals. For this reason, many countries have enforced regulations and recommendations to reduce the dietary exposure. However, even though regulatory actions must be based on solid scientific knowledge, many aspects of their toxicological activity are still poorly understood. In particular, deepening knowledge on the primal molecular events triggering the toxic stimulus may be relevant to better understand the mechanisms of action of mycotoxins. The present work presents the use of in silico approaches in studying the mycotoxins toxicodynamics, and discusses how they may contribute in widening the background of knowledge. A particular emphasis has been posed on the methods accounting the molecular initiating events of toxic action. In more details, the key concepts and challenges of mycotoxins toxicology have been introduced. Then, topical case studies have been presented and some possible practical implementations of studying mycotoxins toxicodynamics have been discussed.
Sprouts of Moringa oleifera Lam.: Germination, Polyphenol Content and Antioxidant Activity
(1) Background: In recent years, the consumption of sprouts, thanks to their high nutritional value, and the presence of bioactive compounds with antioxidant, antiviral and antibacterial properties, is becoming an increasingly widespread habit. Moringa oleifera Lam. (Moringa) seems to be an inexhaustible resource considering that many parts may be used as food or in traditional medicine; on the other hand, Moringa sprouts still lack a proper characterization needing further insights to envisage novel uses and applications. (2) Methods: In this study, a rapid and easy protocol to induce the in vivo and in vitro germination of Moringa seeds has been set up to obtain sprouts and cotyledons to be evaluated for their chemical composition. Moreover, the effects of sprouts developmental stage, type of sowing substrate, and gibberellic acid use on the chemical characteristics of extracts have been evaluated. (3) Results: Moringa seeds have a high germinability, both in in vivo and in vitro conditions. In addition, the extracts obtained have different total phenolic content and antioxidant activity. (4) Conclusions: This research provides a first-line evidence to evaluate Moringa sprouts as future novel functional food or as a valuable source of bioactive compounds.
In silico study on the Hepatitis E virus RNA Helicase and its inhibition by silvestrol, rocaglamide and other flavagline compounds
Hepatitis E Virus (HEV) follows waterborne or zoonotic/foodborne transmission. Genotype 3 HEV infections are worldwide spread, especially in swine populations, representing an emerging threat for human health, both for farm workers and pork meat consumers. Unfortunately, HEV in vitro culture and analysis are still difficult, resulting in a poor understanding of its biology and hampering the implementation of counteracting strategies. Indeed, HEV encodes for only one non-structural multifunctional and multidomain protein (ORF1), which might be a good candidate for anti-HEV drugging strategies. In this context, an in silico molecular modelling approach that consisted in homology modelling to derive the 3D model target, docking study to simulate the binding event, and molecular dynamics to check complex stability over time was used. This workflow succeeded to describe ORF1 RNA Helicase domain from a molecular standpoint allowing the identification of potential inhibitory compounds among natural plant-based flavagline-related molecules such as silvestrol, rocaglamide and derivatives thereof. In the context of scouting potential anti-viral compounds and relying on the outcomes presented, further dedicated investigations on silvestrol, rocaglamide and a promising oxidized derivative have been suggested. For the sake of data reproducibility, the 3D model of HEV RNA Helicase has been made publicly available.
Computational Perspectives on Amoxicillin and Staphylococcus Aureus in Mirror Life
The concept of mirror life is first introduced by Louis Pasteur, referring to biological systems composed of enantiomeric biomolecules. Although nowadays technologies are making a mirror life theoretically achievable, its potential risks remain uncertain. Here, an integrated multi‐tier computational pipeline is employed to address the potential environmental threat posed by the hypothetical mirror‐image of Staphylococcus aureus, a bacterium relevant to environmental and food safety. The findings suggest that amoxicillin, and perhaps other conventional antibiotics, should not be effective against their mirror targets. On the other hand, the enantiomeric amoxicillin may be a successful counteracting measure, although the risks for the biosphere remain unknown. Overall, this study highlights the need for further dedicated investigations in this field, while emphasizing in silico methods, in particular molecular modeling, as a versatile and effective first‐line approach for analysis, free from biohazards and technical limitations of reagents supply. Mirror life is a possible incoming threat. PBP3 of S. aureus, a well‐known target of amoxicillin and other β‐lactam antibiotics, is investigated along with its mirror image showing that the enantiomeric target may elude currently available biocides. Computational tools are safe and reliable to investigate mirror‐life related aspects, either supporting the development of countermeasures or driving the assessment of risks.
Experimental–theoretical study of laccase as a detoxifier of aflatoxins
We investigate laccase-mediated detoxification of aflatoxins, fungal carcinogenic food contaminants. Our experimental comparison between two aflatoxins with similar structures (AFB 1 and AFG 2 ) shows significant differences in laccase-mediated detoxification. A multi-scale modeling approach (Docking, Molecular Dynamics, and Density Functional Theory) identifies the highly substrate-specific changes required to improve laccase detoxifying performance. We employ a large-scale density functional theory-based approach, involving more than 7000 atoms, to identify the amino acid residues that determine the affinity of laccase for aflatoxins. From this study we conclude: (1) AFB 1 is more challenging to degrade, to the point of complete degradation stalling; (2) AFG 2 is easier to degrade by laccase due to its lack of side products and favorable binding dynamics; and (3) ample opportunities to optimize laccase for aflatoxin degradation exist, especially via mutations leading to π–π stacking. This study identifies a way to optimize laccase for aflatoxin bioremediation and, more generally, contributes to the research efforts aimed at rational enzyme optimization.
In vitro interactions of Alternaria mycotoxins, an emerging class of food contaminants, with the gut microbiota: a bidirectional relationship
The human gut microbiota plays an important role in the maintenance of human health. Factors able to modify its composition might predispose the host to the development of pathologies. Among the various xenobiotics introduced through the diet, Alternaria mycotoxins are speculated to represent a threat for human health. However, limited data are currently available about the bidirectional relation between gut microbiota and Alternaria mycotoxins. In the present work, we investigated the in vitro effects of different concentrations of a complex extract of Alternaria mycotoxins (CE; containing eleven mycotoxins; e.g. 0.153 µM alternariol and 2.3 µM altersetin, at the maximum CE concentration tested) on human gut bacterial strains, as well as the ability of the latter to metabolize or adsorb these compounds. Results from the minimum inhibitory concentration assay showed the scarce ability of CE to inhibit the growth of the tested strains. However, the growth kinetics of most of the strains were negatively affected by exposure to the various CE concentrations, mainly at the highest dose (50 µg/mL). The CE was also found to antagonize the formation of biofilms, already at concentrations of 0.5 µg/mL. LC–MS/MS data analysis of the mycotoxin concentrations found in bacterial pellets and supernatants after 24 h incubation showed the ability of bacterial strains to adsorb some Alternaria mycotoxins, especially the key toxins alternariol, alternariol monomethyl ether, and altersetin. The tendency of these mycotoxins to accumulate within bacterial pellets, especially in those of Gram-negative strains, was found to be directly related to their lipophilicity.
On the Mechanism of Action of Anti-Inflammatory Activity of Hypericin: An In Silico Study Pointing to the Relevance of Janus Kinases Inhibition
St. John’s Wort (Hypericum perforatum L.) flowers are commonly used in ethnomedical preparations with promising outcomes to treat inflammation both per os and by topical application. However, the underlying molecular mechanisms need to be described toward a rational, evidence-based, and reproducible use. For this purpose, the aptitude of the prominent Hypericum metabolite hypericin was assessed, along with that of its main congeners, to behave as an inhibitor of janus kinase 1, a relevant enzyme in inflammatory response. It was used a molecular modeling approach relying on docking simulations, pharmacophoric modeling, and molecular dynamics to estimate the capability of molecules to interact and persist within the enzyme pocket. Our results highlighted the capability of hypericin, and some of its analogues and metabolites, to behave as ATP-competitive inhibitor providing: (i) a likely mechanistic elucidation of anti-inflammatory activity of H. perforatum extracts containing hypericin and related compounds; and (ii) a rational-based prioritization of H. perforatum components to further characterize their actual effectiveness as anti-inflammatory agents.