Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
132 result(s) for "Demetri, George D."
Sort by:
Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study
Epithelioid sarcoma is a rare and aggressive soft-tissue sarcoma subtype. Over 90% of tumours have lost INI1 expression, leading to oncogenic dependence on the transcriptional repressor EZH2. In this study, we report the clinical activity and safety of tazemetostat, an oral selective EZH2 inhibitor, in patients with epithelioid sarcoma. In this open-label, phase 2 basket study, patients were enrolled from 32 hospitals and clinics in Australia, Belgium, Canada, France, Germany, Italy, Taiwan, the USA, and the UK into seven cohorts of patients with different INI1-negative solid tumours or synovial sarcoma. Patients eligible for the epithelioid sarcoma cohort (cohort 5) were aged 16 years or older with histologically confirmed, locally advanced or metastatic epithelioid sarcoma; documented loss of INI1 expression by immunohistochemical analysis or biallelic SMARCB1 (the gene that encodes INI1) alterations, or both; and an Eastern Cooperative Oncology Group performance status score of 0–2. Patients received 800 mg tazemetostat orally twice per day in continuous 28-day cycles until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint was investigator-assessed objective response rate measured according to the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary endpoints were duration of response, disease control rate at 32 weeks, progression-free survival, overall survival, and pharmacokinetic and pharmacodynamic analyses (primary results reported elsewhere). Time to response was also assessed as an exploratory endpoint. Activity and safety were assessed in the modified intention-to-treat population (ie, patients who received one or more doses of tazemetostat). This trial is registered with ClinicalTrials.gov, NCT02601950, and is ongoing. Between Dec 22, 2015, and July 7, 2017, 62 patients with epithelioid sarcoma were enrolled in the study and deemed eligible for inclusion in this cohort. All 62 patients were included in the modified intention-to-treat analysis. Nine (15% [95% CI 7–26]) of 62 patients had an objective response at data cutoff (Sept 17, 2018). At a median follow-up of 13·8 months (IQR 7·8–19·0), median duration of response was not reached (95% CI 9·2–not estimable). 16 (26% [95% CI 16–39]) patients had disease control at 32 weeks. Median time to response was 3·9 months (IQR 1·9–7·4). Median progression-free survival was 5·5 months (95% CI 3·4–5·9), and median overall survival was 19·0 months (11·0–not estimable). Grade 3 or worse treatment-related adverse events included anaemia (four [6%]) and weight loss (two [3%]). Treatment-related serious adverse events occurred in two patients (one seizure and one haemoptysis). There were no treatment-related deaths. Tazemetostat was well tolerated and showed clinical activity in this cohort of patients with advanced epithelioid sarcoma characterised by loss of INI1/SMARCB1. Tazemetostat has the potential to improve outcomes in patients with advanced epithelioid sarcoma. A phase 1b/3 trial of tazemetostat plus doxorubicin in the front-line setting is currently underway (NCT04204941). Epizyme.
Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial
A non-randomised, phase 2 study showed activity and tolerability of eribulin in advanced or metastatic soft-tissue sarcoma. In this phase 3 study, we aimed to compare overall survival in patients with advanced or metastatic soft-tissue sarcoma who received eribulin with that in patients who received dacarbazine (an active control). We did this randomised, open-label, phase 3 study across 110 study sites in 22 countries. We enrolled patients aged 18 years or older with intermediate-grade or high-grade advanced liposarcoma or leiomyosarcoma who had received at least two previous systemic regimens for advanced disease (including an anthracycline). Using an interactive voice and web response system, an independent statistician randomly assigned (1:1) patients to receive eribulin mesilate (1·4 mg/m2 intravenously on days 1 and 8) or dacarbazine (850 mg/m2, 1000 mg/m2, or 1200 mg/m2 [dose dependent on centre and clinician] intravenously on day 1) every 21 days until disease progression. Randomisation was stratified by disease type, geographical region, and number of previous regimens for advanced soft-tissue sarcoma and in blocks of six. Patients and investigators were not masked to treatment assignment. The primary endpoint was overall survival in the intention-to-treat population. The study is registered with ClinicalTrials.gov, number NCT01327885, and is closed to recruitment, but treatment and follow-up continue. Between March 10, 2011 and May 22, 2013, we randomly assigned patients to eribulin (n=228) or dacarbazine (n=224). Overall survival was significantly improved in patients assigned to eribulin compared with those assigned to dacarbazine (median 13·5 months [95% CI 10·9–15·6] vs 11·5 months [9·6–13·0]; hazard ratio 0·77 [95% CI 0·62–0·95]; p=0·0169). Treatment-emergent adverse events occurred in 224 (99%) of 226 patients who received eribulin and 218 (97%) of 224 who received dacarbazine. Grade 3 or higher adverse events were more common in patients who received eribulin (152 [67%]) than in those who received dacarbazine (126 [56%]), as were deaths (10 [4%] vs 3 [1%]); one death (in the eribulin group) was considered treatment-related by the investigators. Overall survival was improved in patients assigned to eribulin compared with those assigned to an active control, suggesting that eribulin could be a treatment option for advanced soft-tissue sarcoma. Eisai.
The Angiosarcoma Project: enabling genomic and clinical discoveries in a rare cancer through patient-partnered research
Despite rare cancers accounting for 25% of adult tumors 1 , they are difficult to study due to the low disease incidence and geographically dispersed patient populations, which has resulted in significant unmet clinical needs for patients with rare cancers. We assessed whether a patient-partnered research approach using online engagement can overcome these challenges, focusing on angiosarcoma, a sarcoma with an annual incidence of 300 cases in the United States. Here we describe the development of the Angiosarcoma Project (ASCproject), an initiative enabling US and Canadian patients to remotely share their clinical information and biospecimens for research. The project generates and publicly releases clinically annotated genomic data on tumor and germline specimens on an ongoing basis. Over 18 months, 338 patients registered for the ASCproject, which comprises a large proportion of all patients with angiosarcoma. Whole-exome sequencing (WES) of 47 tumors revealed recurrently mutated genes that included KDR , TP53 , and PIK3CA . PIK3CA -activating mutations were observed predominantly in primary breast angiosarcoma, which suggested a therapeutic rationale. Angiosarcoma of the head, neck, face and scalp (HNFS) was associated with a high tumor mutation burden (TMB) and a dominant ultraviolet damage mutational signature, which suggested that for the subset of patients with angiosarcoma of HNFS, ultraviolet damage may be a causative factor and that immune checkpoint inhibition may be beneficial. Medical record review revealed that two patients with HNFS angiosarcoma had received off-label therapeutic use of antibody to the programmed death-1 protein (anti-PD-1) and had experienced exceptional responses, which highlights immune checkpoint inhibition as a therapeutic avenue for HNFS angiosarcoma. This patient-partnered approach has catalyzed an opportunity to discover the etiology and potential therapies for patients with angiosarcoma. Collectively, this proof-of-concept study demonstrates that empowering patients to directly participate in research can overcome barriers in rare diseases and can enable discoveries. A framework of patient-partnered research allows patients with angiosarcoma to share their samples and clinical records securely to accelerate molecular characterization of tumors and identification of therapeutic approaches.
Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs
Epigenetic aberrations are widespread in cancer, yet the underlying mechanisms and causality remain poorly understood 1 – 3 . A subset of gastrointestinal stromal tumours (GISTs) lack canonical kinase mutations but instead have succinate dehydrogenase (SDH) deficiency and global DNA hyper-methylation 4 , 5 . Here, we associate this hyper-methylation with changes in genome topology that activate oncogenic programs. To investigate epigenetic alterations systematically, we mapped DNA methylation, CTCF insulators, enhancers, and chromosome topology in KIT -mutant, PDGFRA -mutant and SDH-deficient GISTs. Although these respective subtypes shared similar enhancer landscapes, we identified hundreds of putative insulators where DNA methylation replaced CTCF binding in SDH-deficient GISTs. We focused on a disrupted insulator that normally partitions a core GIST super-enhancer from the FGF4 oncogene. Recurrent loss of this insulator alters locus topology in SDH-deficient GISTs, allowing aberrant physical interaction between enhancer and oncogene. CRISPR-mediated excision of the corresponding CTCF motifs in an SDH-intact GIST model disrupted the boundary between enhancer and oncogene, and strongly upregulated FGF4 expression. We also identified a second recurrent insulator loss event near the KIT oncogene, which is also highly expressed across SDH-deficient GISTs. Finally, we established a patient-derived xenograft (PDX) from an SDH-deficient GIST that faithfully maintains the epigenetics of the parental tumour, including hypermethylation and insulator defects. This PDX model is highly sensitive to FGF receptor (FGFR) inhibition, and more so to combined FGFR and KIT inhibition, validating the functional significance of the underlying epigenetic lesions. Our study reveals how epigenetic alterations can drive oncogenic programs in the absence of canonical kinase mutations, with implications for mechanistic targeting of aberrant pathways in cancers. Gastrointestinal stromal tumours can be initiated by gain-of-function mutations of the KIT or PDGFRA oncogenes but also by loss of the metabolic complex succinate dehydrogenase (SDH), which leads to DNA hypermethylation; this study shows that in SDH-deficient tumours, displacement of CTCF insulators by DNA methylation activates oncogene expression, illustrating how epigenetic alterations can drive oncogenic signalling in the absence of kinase mutations.
Real-world survival outcomes in patients with locally advanced or metastatic NTRK fusion-positive solid tumors receiving standard-of-care therapies other than targeted TRK inhibitors
The clinical profiles and outcomes of patients with neurotrophic tropomyosin receptor kinase fusion-positive ( NTRK + ) solid tumors receiving standard of care other than tropomyosin receptor kinase inhibitor (TRKi) targeted therapy have not been well documented. Here, we describe the clinical characteristics of patients with NTRK + tumors treated in clinical practice using information from a United States electronic health record-derived clinicogenomic database. We also compared survival outcomes in NTRK + patients and matched NTRK fusion-negative ( NTRK – ) patients and investigated the clinical prognostic value of NTRK fusions. NTRK positivity was defined by the presence of a fusion or rearrangement involving NTRK1/2/3 , determined using NGS (Foundation Medicine, Inc.). NTRK + patients (n = 28) were diagnosed with locally advanced/metastatic solid tumors between January 1, 2011 and December 31, 2019 and had received no TRKis (e.g., entrectinib or larotrectinib) during their patient journey. The unselected NTRK − population comprised 24,903 patients, and the matched NTRK − cohort included 280 patients. NTRK + patients tended to be younger, were more commonly not smokers, and had a shorter time from advanced diagnosis to first NGS report, compared with unselected NTRK − patients; however, these differences were not significant. Median overall survival (OS) from advanced/metastatic diagnosis was 10.2 months (95% CI, 7.2–14.1) for the NTRK + cohort versus 10.4 months (95% CI, 6.7–14.3) for the matched NTRK − cohort; hazard ratio for death in NTRK + versus matched NTRK − patients was 1.6 (95% CI, 1.0–2.5; P = 0.05). Genomic co-alterations were rare in the NTRK + cohort (only two of 28 patients had a co-alteration). Overall, while hazard ratios suggest NTRK fusions may be a negative prognostic factor of survival, there are no significant indications of any favorable impact of NTRK fusions on patient outcomes. TRKis, with their high response rate and good tolerability, are likely to improve outcomes for patients compared with existing standard-of-care treatments.
Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma
Autologous T cells transduced to express a high affinity T-cell receptor specific to NY-ESO-1 (letetresgene autoleucel, lete-cel) show promise in the treatment of metastatic synovial sarcoma, with 50% overall response rate. The efficacy of lete-cel treatment in 45 synovial sarcoma patients (NCT01343043) has been previously reported, however, biomarkers predictive of response and resistance remain to be better defined. This post-hoc analysis identifies associations of response to lete-cel with lymphodepleting chemotherapy regimen (LDR), product attributes, cell expansion, cytokines, and tumor gene expression. Responders have higher IL-15 levels pre-infusion ( p  = 0.011) and receive a higher number of transduced effector memory (CD45RA- CCR7-) CD8 + cells per kg ( p  = 0.039). Post-infusion, responders have increased IFNγ, IL-6, and peak cell expansion ( p  < 0.01, p  < 0.01, and p  = 0.016, respectively). Analysis of tumor samples post-treatment illustrates lete-cel infiltration and a decrease in expression of macrophage genes, suggesting remodeling of the tumor microenvironment. Here we report potential predictive and pharmacodynamic markers of lete-cel response that may inform LDR, cell dose, and strategies to enhance anticancer efficacy. Biomarkers predictive of response to T cell therapy remain to be better defined. This study identifies potential predictive and pharmacodynamic markers of response to NY-ESO-1 T-cell therapy in a solid tumor that may inform lymphodepletion, cell dose, and strategies to enhance anticancer efficacy.
Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations
Carney-Stratakis syndrome, an inherited condition predisposing affected individuals to gastrointestinal stromal tumor (GIST) and paraganglioma, is caused by germline mutations in succinate dehydrogenase (SDH) subunits B, C, or D, leading to dysfunction of complex II of the electron transport chain. We evaluated the role of defective cellular respiration in sporadic GIST lacking mutations in KIT or PDGFRA (WT). Thirty-four patients with WT GIST without a personal or family history of paraganglioma were tested for SDH germline mutations. WT GISTs lacking demonstrable SDH genetic inactivation were evaluated for SDHB expression by immunohistochemistry and Western blotting and for complex II activity. For comparison, SDHB expression was also determined in KIT mutant and neurofibromatosis-1-associated GIST, and complex II activity was also measured in SDH-deficient paraganglioma and KIT mutant GIST; 4 of 34 patients (12%) with WT GIST without a personal or family history of paraganglioma had germline mutations in SDHB or SDHC. WT GISTs lacking somatic mutations or deletions in SDH subunits had either complete loss of or substantial reduction in SDHB protein expression, whereas most KIT mutant GISTs had strong SDHB expression. Complex II activity was substantially decreased in WT GISTs. WT GISTs, particularly those in younger patients, have defects in SDH mitochondrial complex II, and in a subset of these patients, GIST seems to arise from germline-inactivating SDH mutations. Testing for germline mutations in SDH is recommended in patients with WT GIST. These findings highlight a potential central role of SDH dysregulation in WT GIST oncogenesis.
Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial
Gastrointestinal stromal tumour is the most common sarcoma of the intestinal tract. Imatinib mesylate is a small molecule that inhibits activation of the KIT and platelet-derived growth factor receptor α proteins, and is effective in first-line treatment of metastatic gastrointestinal stromal tumour. We postulated that adjuvant treatment with imatinib would improve recurrence-free survival compared with placebo after resection of localised, primary gastrointestinal stromal tumour. We undertook a randomised phase III, double-blind, placebo-controlled, multicentre trial. Eligible patients had complete gross resection of a primary gastrointestinal stromal tumour at least 3 cm in size and positive for the KIT protein by immunohistochemistry. Patients were randomly assigned, by a stratified biased coin design, to imatinib 400 mg (n=359) or to placebo (n=354) daily for 1 year after surgical resection. Patients and investigators were blinded to the treatment group. Patients assigned to placebo were eligible to crossover to imatinib treatment in the event of tumour recurrence. The primary endpoint was recurrence-free survival, and analysis was by intention to treat. Accrual was stopped early because the trial results crossed the interim analysis efficacy boundary for recurrence-free survival. This study is registered with ClinicalTrials.gov, number NCT00041197. All randomised patients were included in the analysis. At median follow-up of 19·7 months (minimum–maximum 0–56·4), 30 (8%) patients in the imatinib group and 70 (20%) in the placebo group had had tumour recurrence or had died. Imatinib significantly improved recurrence-free survival compared with placebo (98% [95% CI 96–100] vs 83% [78–88] at 1 year; hazard ratio [HR] 0·35 [0·22–0·53]; one-sided p<0·0001). Adjuvant imatinib was well tolerated, with the most common serious events being dermatitis (11 [3%] vs 0), abdominal pain (12 [3%] vs six [1%]), and diarrhoea (ten [2%] vs five [1%]) in the imatinib group and hyperglycaemia (two [<1%] vs seven [2%]) in the placebo group. Adjuvant imatinib therapy is safe and seems to improve recurrence-free survival compared with placebo after the resection of primary gastrointestinal stromal tumour. US National Institutes of Health and Novartis Pharmaceuticals.
Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial
Few treatment options remain for patients with metastatic or unresectable gastrointestinal stromal tumours (GIST) after objective progression on approved tyrosine-kinase inhibitors. We aimed to assess efficacy of imatinib rechallenge in these patients. In our prospective, randomised, double-blind trial, we enrolled adults (≥18 years) who had previously benefited from first-line imatinib (initial response or stable disease for ≥6 months) but whose metastatic or unresectable GIST had progressed on at least imatinib and sunitinib. We randomly allocated participants in a 1:1 ratio, with a centralised computer-generated allocation procedure (random permuted blocks of two, four, and six) and stratified by previous treatment and Eastern Cooperative Oncology Group performance status, to receive best supportive care with imatinib 400 mg per day or matched placebo. Crossover to open-label imatinib was allowed after investigator-adjudicated disease progression. The primary endpoint was progression-free survival (PFS), as determined by a masked external radiological review. All analyses were done for all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT01151852. Between July 20, 2010, and Jan 17, 2013, we randomly allocated 41 patients to the imatinib group and 40 patients to the placebo group. After a median follow-up of 5·2 months (IQR 3·4–9·4), median PFS was 1·8 months (95% CI 1·7–3·6) with imatinib compared with 0·9 months (0·9–1·7) with placebo (hazard ratio for progression or death 0·46, 95% CI 0·27–0·78; p=0·005). 37 (93%) patients in the placebo group crossed over to open-label imatinib after progression. The most common grade 3 or worse adverse events were anaemia (12 [29%] of 41 patients in the imatinib group vs three [8%] of 40 in the placebo group), fatigue (four [10%] vs none), and hyperbilirubinaemia (three [7%] vs one [3%]). In patients with GIST that is refractory to treatment with all standard tyrosine-kinase inhibitors, the disease continues to harbour many clones that are sensitive to kinase inhibitors. Continued kinase suppression might slow, although not halt, disease progression. Novartis Oncology, Ludwig Center at Dana-Farber/Harvard.
Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib
Sunitinib, a multitargeted tyrosine-kinase inhibitor, which is approved by both US and European Commission regulatory agencies for clinical use, extends survival of patients with metastatic renal-cell carcinoma and gastrointestinal stromal tumours, but concerns have arisen about its cardiac safety. We therefore assessed the cardiovascular risk associated with sunitinib in patients with metastatic gastrointestinal stromal tumours. We retrospectively reviewed all cardiovascular events in 75 patients with imatinib-resistant, metastatic, gastrointestinal stromal tumours who had been enrolled in a phase I/II trial investigating the efficacy of sunitinib. The composite cardiovascular endpoint was cardiac death, myocardial infarction, and congestive heart failure. We also examined sunitinib's effects on left ventricular ejection fraction (LVEF) and blood pressure. We investigated potential mechanisms of sunitinib-associated cardiac effects by studies in isolated rat cardiomyocytes and in mice. Eight of 75 (11%) patients given repeating cycles of sunitinib in the phase I/II trial had a cardiovascular event, with congestive heart failure recorded in six of 75 (8%). Ten of 36 (28%) patients treated at the approved sunitinib dose had absolute LVEF reductions in ejection fraction (EF) of at least 10%, and seven of 36 (19%) had LVEF reductions of 15 EF% or more. Sunitinib induced increases in mean systolic and diastolic blood pressure, and 35 of 75 (47%) individuals developed hypertension (>150/100 mm Hg). Congestive heart failure and left ventricular dysfunction generally responded to sunitinib being withheld and institution of medical management. Sunitinib caused mitochondrial injury and cardiomyocyte apoptosis in mice and in cultured rat cardiomyocytes. Left ventricular dysfunction might be due, in part, to direct cardiomyocyte toxicity, exacerbated by hypertension. Patients treated with sunitinib should be closely monitored for hypertension and LVEF reduction, especially those with a history of coronary artery disease or cardiac risk factors.