Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Demeure, Christian"
Sort by:
Evolution of immune genes is associated with the Black Death
Infectious diseases are among the strongest selective pressures driving human evolution 1 , 2 . This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis 3 . This pandemic devastated Afro-Eurasia, killing up to 30–50% of the population 4 . To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 201 variants that are highly differentiated within the London dataset. Combining evidence from during the Black Death, our replicate population in Denmark, and function evidence, rs2549794 near ERAP2 emerges as the strongest candidate for positive selection. The selected allele at rs2549794 is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease. Klunk and colleagues identify signatures of natural selection imposed by Yersinia pestis and demonstrate their effect on genetic diversity and susceptibility to certain diseases in the present day.
Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Contribution of the type 3 secretion system to adaptive and innate immunity induced by a live Yersinia pseudotuberculosis plague vaccine
Yersinia pestis, the causative agent of plague, remains a threat to public health worldwide. From the perspective of developing safe and effective vaccines, we present a derived version of our Y. pseudotuberculosis VTnF1 live attenuated vaccine candidate that lacks the pYV virulence plasmid coding for the Type 3 Secretion system (T3SS) and carries no antibiotic resistance cassettes (VTnF1-S). This strain, named VpYV-, fails to cause disease in immunocompromised mice when given orally, and can be considered as avirulent in such conditions. It retains a tropism for Peyer's patches and mesenteric lymph nodes, whilst rarely reaching the spleen and liver. When compared to VTnF1-S, VpYV- elicited equivalent production of IgG directed to the F1 antigen, but less IgG directed to other Yersinia antigens. A single oral dose of VpYV- induced 100 % protection against bubonic and pneumonic forms of plague. Four months after vaccination, the protection induced by VpYV- had decreased more than that induced by VTnF1-S. Furthermore, VpYV- was 30 % less protective against F1-negative Y. pestis, revealing that the T3SS components encoded by pYV are mandatory to obtain a large spectrum protection. Finally, VTnF1-S and VpYV- were compared for their ability to induce immediate immune activity against co-infecting Y. pestis, which could be a potential therapeutic strategy against early-stage infections. Like the historical Y. pestis vaccine EV76, VTnF1-S was able to induce such a protection. The process involved nutritional immunity in serum, indicating a fast activation of innate immune mechanisms. By contrast, VpYV- failed to protect mice, revealing an importance of the T3SS in this mechanism. Overall, VTnF1 and its derivative strain VpYV-, offer a choice between better vaccine performance or greater vaccine safety. They represent useful tools to prevent and treat Y. pestis infection in healthy or immunocompromised individuals.
Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination
No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral administration.
Human plague: An old scourge that needs new answers
Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague's resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a \"One Health\" approach.
Humoral and cellular immune correlates of protection against bubonic plague by a live Yersinia pseudotuberculosis vaccine
•IgG & cells triggered by a Y. pseudotuberculosis live vaccine each protect against bubonic plague.•IFNγ production and IgG to F1, Yops or sonicated Y.pestis correlate to each other and to protection.•Anti-F1 IgG is the easiest and statistically best predictor of protection, transposable to humans. Immunization with the live-attenuated Yersinia pseudotuberculosis VTnF1 strain producing a Yersinia pestis F1 pseudocapsule efficiently protects mice against bubonic and pneumonic plague. In clinical trials, demonstration of a plague vaccine’s efficacy in humans will not be feasible, and correlates of protection will be needed to bridge the immune response of protected animals to that of vaccinated humans. Using serum transfer and vaccination of antibody-deficient µMT mice, we established that both humoral and cellular responses elicited by VTnF1 independently conferred protection against bubonic plague. Thus, correlates were searched for in both responses, using blood only. Mice were vaccinated with increasing doses of VTnF1 to provide a range of immune responses and survival outcomes. The cellular response was evaluated using an in vitro IFNγ release assay, and IFNγ levels were significantly associated with protection, although some survivors were negative for IFNγ, so that IFNγ release is not a fully satisfactory correlate. Abundant serum IgG against the F1 capsule, Yop injectable toxins, and also non-F1 Y.pestis antigens were found, but none against the LcrV antigen. All readouts correlated to survival and to each other, confirming that vaccination triggered multiple protective mechanisms developing in parallel. Anti-F1 IgG was the most stringent correlate of protection, in both inbred BALB/c mice and outbred OF1 mice. This indicates that antibodies (Ab) to F1 play a dominant role for protection even in the presence of Ab to many other targets. Easy to measure, the anti-F1 IgG titer will be useful to evaluate the immune response in other animal species and in clinical trials.
Subcutaneous vaccination with a live attenuated Yersinia pseudotuberculosis plague vaccine
A single oral inoculation to mice of the live attenuated Yersinia pseudotuberculosis VTnF1 strain producing an F1 pseudocapsule protects against bubonic and pneumonic plague. However oral vaccination can fail in humans exposed to frequent intestinal infections. We evaluated in mice the efficacy of subcutaneous vaccine injection as an alternative way to induce protective immunity, while reducing the dose and avoiding strain release in nature. A single subcutaneous dose of up to 108 CFU induced dose-dependent antibody production. At the dose of 107 CFU, i.e. 10 times less than via the oral route, it caused a modest skin reaction and protected 100% against bubonic and 80% against pneumonic plague, caused by high doses of Yersinia pestis. Bacteria migrating to lymph nodes and spleen, but not feces, were rapidly eliminated. Thus, subcutaneous injection of VTnF1 would represent a good alternative when dissemination in nature and human intestinal responsiveness are limitations.
Fast and Simple Detection of Yersinia pestis Applicable to Field Investigation of Plague Foci
Yersinia pestis, the plague bacillus, has a rodent-flea-rodent life cycle but can also persist in the environment for various periods of time. There is now a convenient and effective test (F1-dipstick) for the rapid identification of Y. pestis from human patient or rodent samples, but this test cannot be applied to environmental or flea materials because the F1 capsule is mostly produced at 37°C. The plasminogen activator (PLA), a key virulence factor encoded by a Y. pestis-specific plasmid, is synthesized both at 20°C and 37°C, making it a good candidate antigen for environmental detection of Y. pestis by immunological methods. A recombinant PLA protein from Y. pestis synthesized by an Escherichia coli strain was used to produce monoclonal antibodies (mAbs). PLA-specific mAbs devoid of cross-reactions with other homologous proteins were further cloned. A pair of mAbs was selected based on its specificity, sensitivity, comprehensiveness, and ability to react with Y. pestis strains grown at different temperatures. These antibodies were used to develop a highly sensitive one-step PLA-enzyme immunoassay (PLA-EIA) and an immunostrip (PLA-dipstick), usable as a rapid test under field conditions. These two PLA-immunometric tests could be valuable, in addition to the F1-disptick, to confirm human plague diagnosis in non-endemic areas (WHO standard case definition). They have the supplementary advantage of allowing a rapid and easy detection of Y. pestis in environmental and flea samples, and would therefore be of great value for surveillance and epidemiological investigations of plague foci. Finally, they will be able to detect natural or genetically engineered F1-negative Y. pestis strains in human patients and environmental samples.
Short- and long-term humoral immune response against Yersinia pestis in plague patients, Madagascar
Background Plague, a fatal disease caused by the bacillus, Yersinia pestis , still affects resources-limited countries. Information on antibody response to plague infection in human is scarce. Anti-F1 Ig G are among the known protective antibodies against Y. pestis infection. As a vaccine preventable disease, knowledge on antibody response is valuable for the development of an effective vaccine to reduce infection rate among exposed population in plague-endemic regions. In this study, we aim to describe short and long-term humoral immune responses against Y. pestis in plague-confirmed patients from Madagascar, the most affected country in the world. Methods Bubonic (BP) and pneumonic plague (PP) patients were recruited from plague- endemic foci in the central highlands of Madagascar between 2005 and 2017. For short-term follow-up, 6 suspected patients were enrolled and prospectively investigated for kinetics of the anti-F1 IgG response, whereas the persistence of antibodies was retrospectively studied in 71 confirmed convalescent patients, using an ELISA which was validated for the detection of plague in human blood samples in Madagascar. Results Similarly to previous findings, anti-F1 IgG rose quickly during the first week after disease onset and increased up to day 30. In the long-term study, 56% of confirmed cases remained seropositive, amongst which 60 and 40% could be considered as high- and low-antibody responders, respectively. Antibodies persisted for several years and up to 14.8 years for one individual. Antibody titers decreased over time but there was no correlation between titer and time elapsed between the disease onset and serum sampling. In addition, the seroprevalence rate was not significantly different between gender ( P  = 0.65) nor age ( P  = 0.096). Conclusion Our study highlighted that the circulating antibody response to F1 antigen, which is specific to Y. pestis , may be attributable to individual immune responsiveness. The finding that a circulating anti-F1 antibody titer could persist for more than a decade in both BP and PP recovered patients, suggests its probable involvement in patients’ protection. However, complementary studies including analyses of the cellular immune response to Y. pestis are required for the better understanding of long-lasting protection and development of a potential vaccine against plague.