Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Deng, Ming-Jay"
Sort by:
Encapsulation and Characterization of Nanoemulsions Based on an Anti-oxidative Polymeric Amphiphile for Topical Apigenin Delivery
Apigenin (Apig) is used as a model drug due to its many beneficial bio-activities and therapeutic potentials. Nevertheless, its poor water solubility and low storage stability have limited its application feasibility on the pharmaceutical field. To address this issue, this study developed nanoemulsions (NEs) using an anti-oxidative polymeric amphiphile, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), hydrogenated soy lecithin (HL), black soldier fly larvae (BSFL) oil, and avocado (AV) oil through pre-homogenization and ultrasonication method. Addition of TPGS (weight ratios 100 and 50% as compared to HL) into NEs effectively reduced particle size and phase transition region area of NEs with pure HL. Incorporation of Apig into NEs made particle size increase and provided a disorder effect on intraparticle molecular packing. Nevertheless, the encapsulation efficiency of NEs for Apig approached to about 99%. The chemical stability of Apig was significantly improved and its antioxidant ability was elevated by incorporation with BSFL oil and AV oil NEs, especially for NEs with single TPGS. NEs with single TPGS also exhibited the best Apig skin deposition. For future application of topical Apig delivery, NEs-gel was formed by the addition of hyaluronic acid (HA) into NEs. Their rheological characteristics were dominated by the surfactant ratios of HL to TPGS.
Evaluation of Polymer Gel Electrolytes for Use in MnO2 Symmetric Flexible Electrochemical Supercapacitors
Flexible electrochemical supercapacitors (FESCs) are emerging as innovative energy storage systems, characterized by their stable performance, long cycle life, and portability/foldability. Crucial components of FESCs, such as electrodes and efficient electrolytes, have become the focus of extensive research. Herein, we examine deep eutectic solvent (DES)–based polymer gel systems for their cost-effective accessibility, simple synthesis, excellent biocompatibility, and exceptional thermal and electrochemical stability. We used a mixture a DES, LiClO4–2-Oxazolidinone as the electroactive species, and a polymer, either polyvinyl alcohol (PVA) or polyacrylamide (PAAM) as a redox additive/plasticizer. This combination facilitates a unique ion-transport process, enhancing the overall electrochemical performance of the polymer gel electrolyte. We manufactured and used LiClO4–2-Oxazolidinone (LO), polyvinyl alcohol–LiClO4–2-Oxazolidinone (PVA–LO), and polyacrylamide–LiClO4–2-Oxazolidinone (PAAM–LO) electrolytes to synthesize an MnO2 symmetric FESC. To evaluate their performance, we analyzed the MnO2 symmetric FESC using various electrolytes with cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The FESC featuring the PVA–LO electrolyte demonstrated superior electrochemical and mechanical performances. This solid-state MnO2 symmetric FESC exhibited a specific capacitance of 121.6 F/g within a potential window of 2.4 V. Due to the excellent ionic conductivity and the wide electrochemical operating voltage range of the PVA–LO electrolyte, a high energy density of 97.3 Wh/kg at 1200 W/kg, and a long-lasting energy storage system (89.7% capacitance retention after 5000 cycles of GCD at 2 A/g) are feasibly achieved. For practical applications, we employed the MnO2 symmetric FESCs with the PVA–LO electrolyte to power a digital watch and a light-emitting diode, further demonstrating their real-world utility.
Enhanced Pseudocapacitive Performance of Symmetric Polypyrrole-MnO2 Electrode and Polymer Gel Electrolyte
Herein, the nanostructured polypyrrole-coated MnO2 nanofibers growth on carbon cloth (PPy-MnO2-CC) to serve as the electrodes used in conjunction with a quasi-ionic liquid-based polymer gel electrolyte (urea-LiClO4-PVA) for solid-state symmetric supercapacitors (SSCs). The resultant PPy-MnO2-CC solid-state SSCs exhibited a high specific capacitance of 270 F/g at 1.0 A/g in a stable and wide potential window of 2.1 V with a high energy/power density (165.3 Wh/kg at 1.0 kW/kg and 21.0 kW/kg at 86.4 Wh/kg) along with great cycling stability (capacitance retention of 92.1% retention after 3000 cycles) and rate capability (141 F/g at 20 A/g), exceeding most of the previously reported SSCs. The outstanding performance of the studied 2.1 V PPy-MnO2-CC flexible SSCs could be attributed to the nanostructured PPy-coated MnO2 composite electrode and the urea-LiClO4-PVA polymer gel electrolyte design. In addition, the PPy-MnO2-CC solid-state SSCs could effectively retain their electrochemical performance at various bending angles, demonstrating their huge potential as power sources for flexible and lightweight electronic devices. This work offers an easy way to design and achieve light weight and high-performance SSCs with enhanced energy/power density.
Fabrication of a Microfluidic-Based Device Coated with Polyelectrolyte-Capped Titanium Dioxide to Couple High-Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry for Mercury Speciation
Mercury (Hg) is a toxic element which impacts on biological systems and ecosystems. Because the toxicity of Hg species is highly dependent on their concentration levels and chemical forms, the sensitive identification of the chemical forms of Hg—i.e., Hg speciation—is of major significance in providing meaningful information about the sources of Hg exposure. In this study, a microfluidic-based device made of high-clarity poly(methyl methacrylate) (PMMA) was fabricated. Then, titanium dioxide nanoparticles (nano-TiO2s) were attached to the treated channel’s interior with the aid of poly(diallyldimethylammonium chloride) (PDADMAC). After coupling the nano-TiO2-coated microfluidic-based photocatalyst-assisted reduction device (the nano-TiO2-coated microfluidic-based PCARD) with high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS), a selective and sensitive, hyphenated system for Hg speciation was established. Validation procedures demonstrated that the method could be satisfactorily applied to the determination of mercury ions (Hg2+) and methylmercury ions (CH3Hg+) in both human urine and water samples. Remarkably, the zeta potential measured clearly indicated that the PDADMAC-capped nano-TiO2s with a predominance of positive charges indeed provided a steady force for firm attachment to the negatively charged device channel. The cause of the durability of the nano-TiO2-coated microfluidic-based PCARD was clarified thus.
A stochastic multi-objective optimization decision model for energy facility allocation: a case of liquefied petroleum gas station
To mitigate air pollution problem, the government has been planning to build more liquefied petroleum gas stations to motivate drivers to use liquefied petroleum gas vehicles in Taiwan. Such facility allocation problem is a multi-objective optimization process considering spatial variation in the need of refueling. This study presents a stochastic multi-objective optimization model for liquefied petroleum gas station allocation (SMOMLSA) that integrates a nondominated sorting genetic algorithm II with a Monte Carlo simulation to optimally allocate liquefied petroleum gas stations according to three trade-off objectives, including investment performance, energy conversion, and business opportunity. Monte Carlo simulation procedure generates the starting location of a taxicab car in need of refueling in the spatial grid based on a probability distribution. Nondominated sorting genetic algorithm II resolves the station location problem with these multi-objectives. The SMOMLSA was validated by conducting a real-world case study. Result depicts that the SMOMLSA can provide information on the optimal allocation of liquefied petroleum gas stations for minimizing construction costs, minimizing average refueling distance for vehicles, and maximizing potential customers.Graphic abstract
1.8 V Aqueous Symmetric Carbon-Based Supercapacitors with Agarose-Bound Activated Carbons in an Acidic Electrolyte
The specific energy of an aqueous carbon supercapacitor is generally small, resulting mainly from a narrow potential window of aqueous electrolytes. Here, we introduced agarose, an ecologically compatible polymer, as a novel binder to fabricate an activated carbon supercapacitor, enabling a wider potential window attributed to a high overpotential of the hydrogen-evolution reaction (HER) of agarose-bound activated carbons in sulfuric acid. Assembled symmetric aqueous cells can be galvanostatically cycled up to 1.8 V, attaining an enhanced energy density of 13.5 W h/kg (9.5 µW h/cm2) at 450 W/kg (315 µW/cm2). Furthermore, a great cycling behavior was obtained, with a 94.2% retention of capacitance after 10,000 cycles at 2 A/g. This work might guide the design of an alternative material for high-energy aqueous supercapacitors.
Hydrothermal Carbonization of Cellulose with Ammonium Sulfate and Thiourea for the Production of Supercapacitor Carbon
Doping with heteroatoms is the main method used to enhance energy storage with carbon materials, and polyatomic doping is one of the main challenges. Hydrothermal carbonization of cellulose was performed at 240 °C for 1 h. Ammonium sulfate and thiourea dopants were selected as the sources of inorganic nitrogen and organic nitrogen in the preparation of supercapacitor carbon. The effects of boric acid on the properties of the resulting hydrochar after KOH activation were examined. The results showed that the proportion of functional groups and the specific surface area of the activated hydrochar were reduced by the addition of boric acid, and the formation of micropores was inhibited. The hydrochar obtained from the reaction of cellulose and organic nitrogen compounds had a better pore size distribution and electrochemical properties after activation. The largest specific surface area (952.27 m2/g) was obtained when thiourea was used as the sole dopant. In a three-electrode system, the specific capacitance of the activated hydrochar reached 235.8 F/g at a current density of 1 A/g. After 20,000 charging and discharging cycles at a current density of 10 A/g, the capacitance retention rate was 99.96%. Therefore, this study showed that supercapacitor carbon with good electrochemical properties was obtained by the direct reactions of cellulose with organic nitrogen compounds.
Evaluation of Polymer Gel Electrolytes for Use in MnOsub.2 Symmetric Flexible Electrochemical Supercapacitors
Flexible electrochemical supercapacitors (FESCs) are emerging as innovative energy storage systems, characterized by their stable performance, long cycle life, and portability/foldability. Crucial components of FESCs, such as electrodes and efficient electrolytes, have become the focus of extensive research. Herein, we examine deep eutectic solvent (DES)–based polymer gel systems for their cost-effective accessibility, simple synthesis, excellent biocompatibility, and exceptional thermal and electrochemical stability. We used a mixture a DES, LiClO[sub.4]–2-Oxazolidinone as the electroactive species, and a polymer, either polyvinyl alcohol (PVA) or polyacrylamide (PAAM) as a redox additive/plasticizer. This combination facilitates a unique ion-transport process, enhancing the overall electrochemical performance of the polymer gel electrolyte. We manufactured and used LiClO[sub.4]–2-Oxazolidinone (LO), polyvinyl alcohol–LiClO[sub.4]–2-Oxazolidinone (PVA–LO), and polyacrylamide–LiClO[sub.4]–2-Oxazolidinone (PAAM–LO) electrolytes to synthesize an MnO[sub.2] symmetric FESC. To evaluate their performance, we analyzed the MnO[sub.2] symmetric FESC using various electrolytes with cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The FESC featuring the PVA–LO electrolyte demonstrated superior electrochemical and mechanical performances. This solid-state MnO[sub.2] symmetric FESC exhibited a specific capacitance of 121.6 F/g within a potential window of 2.4 V. Due to the excellent ionic conductivity and the wide electrochemical operating voltage range of the PVA–LO electrolyte, a high energy density of 97.3 Wh/kg at 1200 W/kg, and a long-lasting energy storage system (89.7% capacitance retention after 5000 cycles of GCD at 2 A/g) are feasibly achieved. For practical applications, we employed the MnO[sub.2] symmetric FESCs with the PVA–LO electrolyte to power a digital watch and a light-emitting diode, further demonstrating their real-world utility.