Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Deng, Wulan"
Sort by:
CASFISH
2015
Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis.
Journal Article
Dynamics of CRISPR-Cas9 genome interrogation in living cells
2015
The RNA-guided CRISPR-associated protein Cas9 is used for genome editing, transcriptional modulation, and live-cell imaging. Cas9-guide RNA complexes recognize and cleave double-stranded DNA sequences on the basis of 20-nucleotide RNA-DNA complementarity, but the mechanism of target searching in mammalian cells is unknown. Here, we use single-particle tracking to visualize diffusion and chromatin binding of Cas9 in living cells. We show that three-dimensional diffusion dominates Cas9 searching in vivo, and off-target binding events are, on average, short-lived (<1 second). Searching is dependent on the local chromatin environment, with less sampling and slower movement within heterochromatin. These results reveal how the bacterial Cas9 protein interrogates mammalian genomes and navigates eukaryotic chromatin structure.
Journal Article
The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors
RNA polymerase II (Pol II) apparatuses are compartmentalized into transcriptional clusters. Whether protein factors control these clusters remains unknown. In this study, we find that the
A
TPase-
a
ssociated with diverse cellular
a
ctivities (AAA + ) ATPase RUVBL2 co-occupies promoters with Pol II and various transcription factors. RUVBL2 interacts with unphosphorylated Pol II in chromatin to promote RPB1 carboxy-terminal domain (CTD) clustering and transcription initiation. Rapid depletion of RUVBL2 leads to a decrease in the number of Pol II clusters and inhibits nascent RNA synthesis, and tethering RUVBL2 to an active promoter enhances Pol II clustering at the promoter. We also identify target genes that are directly linked to the RUVBL2-Pol II axis. Many of these genes are hallmarks of cancers and encode proteins with diverse cellular functions. Our results demonstrate an emerging activity for RUVBL2 in regulating Pol II cluster formation in the nucleus.
RNA polymerase II (Pol II) transcription factories play a central role in gene expression and 3D chromatin organization. Here, the authors demonstrate that RUVBL2 directly regulates Pol II clustering at active gene promoters.
Journal Article
Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes
2011
Acetylation of histones triggers association with bromodomain-containing proteins that regulate diverse chromatin-related processes. Although acetylation of transcription factors has been appreciated for some time, the mechanistic consequences are less well understood. The hematopoietic transcription factor GATA1 is acetylated at conserved lysines that are required for its stable association with chromatin. We show that the BET family protein Brd3 binds via its first bromodomain (BD1) to GATA1 in an acetylation-dependent manner in vitro and in vivo. Mutation of a single residue in BD1 that is involved in acetyl-lysine binding abrogated recruitment of Brd3 by GATA1, demonstrating that acetylation of GATA1 is essential for Brd3 association with chromatin. Notably, Brd3 is recruited by GATA1 to both active and repressed target genes in a fashion seemingly independent of histone acetylation. Anti-Brd3 ChIP followed by massively parallel sequencing in GATA1-deficient erythroid precursor cells and those that are GATA1 replete revealed that GATA1 is a major determinant of Brd3 recruitment to genomic targets within chromatin. A pharmacologic compound that occupies the acetyl-lysine binding pockets of Brd3 bromodomains disrupts the Brd3-GATA1 interaction, diminishes the chromatin occupancy of both proteins, and inhibits erythroid maturation. Together these findings provide a mechanism for GATA1 acetylation and suggest that Brd3 \"reads\" acetyl marks on nuclear factors to promote their stable association with chromatin.
Journal Article
P2 capsid protein of the nonenveloped rice dwarf phytoreovirus induces membrane fusion in insect host cells
2007
Insect transmission is an essential process of infection for numerous plant and animal viruses. How an insect-transmissible plant virus enters an insect cell to initiate the infection cycle is poorly understood, especially for nonenveloped plant and animal viruses. The capsid protein P2 of rice dwarf virus (RDV), which is nonenveloped, is necessary for insect transmission. Here, we present evidence that P2 shares structural features with membrane-fusogenic proteins encoded by enveloped animal viruses. When RDV P2 was ectopically expressed and displayed on the surface of insect Spodoptera frugiperda cells, it induced membrane fusion characterized by syncytium formation at low pH. Mutational analyses identified the N-terminal and a heptad repeat as being critical for the membrane fusion-inducing activity. These results are corroborated with results from RDV-infected cells of the insect vector leafhopper. We propose that the RDV P2-induced membrane fusion plays a critical role in viral entry into insect cells. Our report that a plant viral protein can induce membrane fusion has broad significance in studying the mechanisms of virus entry into insect cells and insect transmission of nonenveloped plant and animal viruses.
Journal Article
Controlling long-range genomic interactions to reprogram the beta-globin locus
by
Blobel, Gerd A
,
Reik, Andreas
,
Gregory, Philip D
in
Epigenetics
,
Gene expression
,
Genetic engineering
2013
Doc number: O39
Journal Article
Mesoscale chromatin confinement facilitates target search of pioneer transcription factors in live cells
2024
Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable “confined target search” mechanism. PTFs like FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-pioneer factor MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones. Super-resolved microscopy showed closed chromatin organized as mesoscale nucleosome-dense domains, confining FOXA2 diffusion locally and enriching its binding. We pinpointed specific histone-interacting disordered regions, distinct from DNA-binding domain, crucial for confined target search kinetics and pioneer activity within closed chromatin. Fusion to other factors enhanced pioneer activity. Kinetic simulations suggested transient confinement could increase target association rate by shortening search time and binding repeatedly. Our findings illuminate how PTFs recognize and exploit closed chromatin organization to access targets, revealing a pivotal aspect of gene regulation.
A Palette of Bridged Bicycle-Strengthened Fluorophores
2024
Organic fluorophores are the keystone of advanced biological imaging. The vast chemical space of fluorophores has been extensively explored in seek of molecules with ideal properties. However, within the current molecular constraints, there appears to be a trade-off between high brightness, robust photostability, and tunable biochemical properties. Herein we report a general strategy to systematically boost the performance of donor-acceptor-type fluorophores by leveraging SO2 and O-substituted azabicyclo[3.2.1] octane auxochromes. These bicyclic heterocycles give rise to a collection of 'Bridged' dyes (BD) spanning the UV and visible range with top-notch quantum efficiencies, enhanced water solubility, and tunable cell-permeability. Notably, these azabicyclic fluorophores showed remarkable photostability than its tetramethyl or azatidine analogue, at the same time completely resistant to oxidative photobluing rendered by the Bredt's rule. Functionalized BD dyes are tailored for applications in single-molecule imaging, super-resolution imaging (STED and SIM) in fixed or live mammalian cells and plant cells, and live zebrafish imaging or chemigenetic voltage imaging. Synergizing with advanced imaging methods, the bridge bicycle dyes represent a versatile palette for biological researches.Competing Interest StatementZ.C., J.Z., and P. C. are the inventors of a patent on the bridged-bicycle strengthened fluorophores (CN2023108090626, patent pending), whose value may be affected by this paper.