Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
18,368
result(s) for
"Deng, Yang"
Sort by:
Deep learning in natural language processing
Deep learning has revolutionized a number of applications in artificial intelligence, including speech, vision, natural language, game playing, healthcare, and robotics. In particular, the recent striking success of deep learning in a wide variety of Natural Language Processing (NLP) application areas has been taken as a landmark of deep learning in one of the most important tasks in Artificial Intelligence. The book presents the state-of-the-art of deep learning research, and its applications in major NLP tasks including speech recognition, lexical analysis, parsing, knowledge graph, machine translation, information retrieval, question answering, sentiment analysis, social computing, spoken language understanding, and dialogue systems. The self-contained, comprehensive chapters have been written by leading researchers in the field. It appeals undergraduate and graduate students, post-doctoral researchers, lecturers, and industrial researchers and anyone interested in deep learning and natural language processing.
Mini-LED, Micro-LED and OLED displays: present status and future perspectives
2020
Presently, liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays are two dominant flat panel display technologies. Recently, inorganic mini-LEDs (mLEDs) and micro-LEDs (μLEDs) have emerged by significantly enhancing the dynamic range of LCDs or as sunlight readable emissive displays. “mLED, OLED, or μLED: who wins?” is a heated debatable question. In this review, we conduct a comprehensive analysis on the material properties, device structures, and performance of mLED/μLED/OLED emissive displays and mLED backlit LCDs. We evaluate the power consumption and ambient contrast ratio of each display in depth and systematically compare the motion picture response time, dynamic range, and adaptability to flexible/transparent displays. The pros and cons of mLED, OLED, and μLED displays are analysed, and their future perspectives are discussed.Smaller LEDs usher in more advanced displaysMini and micro light-emitting diodes (LEDs) could move to the centre-stage of display screen technologies once they mature. Shin-Tson Wu of the University of Central Florida and colleagues analysed the pros, cons, and future prospects of the latest display screen technologies, especially for use in smartphones, smart watches, virtual and augmented reality, and heads-up vehicle displays. These applications require bright, flexible, transparent, and power-efficient displays. The currently dominant liquid crystal displays (LCDs) require a backlight unit, dictating their shape and flexibility. LCDs with a backlight unit made from mini LEDs are becoming rapid contenders to the conventional technology. So are displays using organic light-emitting diodes, but these are limited in their brightness and lifespans. Emissive displays made from mini and micro-LEDs show huge potential once manufacturing costs can be brought down.
Journal Article
The Role of Macrophage in the Pathogenesis of Osteoporosis
2019
Osteoporosis is a systemic disease with progressive bone loss. The bone loss is associated with an imbalance between bone resorption via osteoclasts and bone formation via osteoblasts. Other cells including T cells, B cells, macrophages, and osteocytes are also involved in the pathogenesis of osteoporosis. Different cytokines from activated macrophages can regulate or stimulate the development of osteoclastogenesis-associated bone loss. The fusion of macrophages can form multinucleated osteoclasts and, thus, cause bone resorption via the expression of IL-4 and IL-13. Different cytokines, endocrines, and chemokines are also expressed that may affect the presentation of macrophages in osteoporosis. Macrophages have an effect on bone formation during fracture-associated bone repair. However, activated macrophages may secrete proinflammatory cytokines that induce bone loss by osteoclastogenesis, and are associated with the activation of bone resorption. Targeting activated macrophages at an appropriate stage may help inhibit or slow the progression of bone loss in patients with osteoporosis.
Journal Article
Fundamentals of Liquid Crystal Devices
by
Yang, Deng-Ke
,
Wu, Shin-Tson
in
Liquid crystal devices
,
Liquid crystal displays
,
Liquid crystals
2014
Liquid Crystal Devices are crucial and ubiquitous components of an ever-increasing number of technologies. They are used in everything from cellular phones, eBook readers, GPS devices, computer monitors and automotive displays to projectors and TVs, to name but a few. This second edition continues to serve as an introductory guide to the fundamental properties of liquid crystals and their technical application, while explicating the recent advancements within LCD technology. This edition includes important new chapters on blue-phase display technology, advancements in LCD research significantly contributed to by the authors themselves.
This title is of particular interest to engineers and researchers involved in display technology and graduate students involved in display technology research.
* Key features:
Updated throughout to reflect the latest technical state-of-the-art in LCD research and development, including new chapters and material on topics such as the properties of blue-phase liquid crystal displays and 3D liquid crystal displays;
* Explains the link between the fundamental scientific principles behind liquid crystal technology and their application to photonic devices and displays, providing a thorough understanding of the physics, optics, electro-optics and material aspects of Liquid Crystal Devices;
* Revised material reflecting developments in LCD technology, including updates on optical modelling methods, transmissive LCDs and tunable liquid crystal photonic devices;
* Chapters conclude with detailed homework problems to further cement an understanding of the topic.
Advanced Oxidation Processes (AOPs) in Wastewater Treatment
by
Zhao, Renzun
,
Deng, Yang
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Biodegradability
2015
Advanced oxidation processes (AOPs) were first proposed in the 1980s for drinking water treatment and later were widely studied for treatment of different wastewaters. During the AOP treatment of wastewater, hydroxyl radicals (OH·) or sulfate radicals (SO
4
·−
) are generated in sufficient quantity to remove refractory organic matters, traceable organic contaminants, or certain inorganic pollutants, or to increase wastewater biodegradability as a pre-treatment prior to an ensuing biological treatment. In this paper, we review the fundamental mechanisms of radical generation in different AOPs and select landfill leachate and biologically treated municipal wastewater as model wastewaters to discuss wastewater treatment with different AOPs. Generally, the treatment efficiencies rely heavily upon the selected AOP type, physical and chemical properties of target pollutants, and operating conditions. It would be noted that other mechanisms, besides hydroxyl radical or sulfate radical-based oxidation, may occur during the AOP treatment and contribute to the reduction of target pollutants. Particularly, we summarize recent advances in the AOP treatment of landfill leachate, as well as advanced oxidation of effluent organic matters (EfOM) in biologically treated secondary effluent (BTSE) for water reuse.
Journal Article
Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway
by
Ma, Zhan-Qiang
,
Zhang, Ru-Yi
,
Wang, Si-Qi
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Analysis
2019
Background
Baicalin, which is isolated from
Radix Scutellariae
, possesses strong biological activities including an anti-inflammation property. Recent studies have shown that the anti-inflammatory effect of baicalin is linked to toll-like receptor 4 (TLR4), which participates in pathological changes of central nervous system diseases such as depression. In this study, we explored whether baicalin could produce antidepressant effects via regulation of TLR4 signaling in mice and attempted to elucidate the underlying mechanisms.
Methods
A chronic unpredictable mild stress (CUMS) mice model was performed to explore whether baicalin could produce antidepressant effects via the inhibition of neuroinflammation. To clarify the role of TLR4 in the anti-neuroinflammatory efficacy of baicalin, a lipopolysaccharide (LPS) was employed in mice to specially activate TLR4 and the behavioral changes were determined. Furthermore, we used LY294002 to examine the molecular mechanisms of baicalin in regulating the expression of TLR4 in vivo and in vitro using western blot, ELISA kits, and immunostaining. In the in vitro tests, the BV2 microglia cell lines and primary microglia cultures were pretreated with baicalin and LY292002 for 1 h and then stimulated 24 h with LPS. The primary microglial cells were transfected with the forkhead transcription factor forkhead box protein O 1 (FoxO1)-specific siRNA for 5 h and then co-stimulated with baicalin and LPS to investigate whether FoxO1 participated in the effect of baicalin on TLR4 expression.
Results
The administration of baicalin (especially 60 mg/kg) dramatically ameliorated CUMS-induced depressive-like symptoms; substantially decreased the levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in the hippocampus; and significantly decreased the expression of TLR4. The activation of TLR4 by the LPS triggered neuroinflammation and evoked depressive-like behaviors in mice, which were also alleviated by the treatment with baicalin (60 mg/kg). Furthermore, the application of baicalin significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and FoxO1. The application of baicalin also promoted FoxO1 nuclear exclusion and contributed to the inhibition of the FoxO1 transactivation potential, which led to the downregulation of the expression of TLR4 in CUMS mice or LPS-treated BV2 cells and primary microglia cells. However, prophylactic treatment of LY294002 abolished the above effects of baicalin. In addition, we found that FoxO1 played a vital role in baicalin by regulating the TLR4 and TLR4-mediating neuroinflammation triggered by the LPS via knocking down the expression of FoxO1 in the primary microglia.
Conclusion
Collectively, these results demonstrate that baicalin ameliorated neuroinflammation-induced depressive-like behaviors through the inhibition of TLR4 expression via the PI3K/AKT/FoxO1 pathway.
Journal Article
Long non-coding RNAs in Oral squamous cell carcinoma: biologic function, mechanisms and clinical implications
by
Jiang, Yong
,
Yang, Deng-cheng
,
Chen, Ran
in
Biomarker
,
Biomarkers
,
Biomarkers, Tumor - genetics
2019
There is growing evidence that regions of the genome that cannot encode proteins play an important role in diseases. These regions are usually transcribed into long non-coding RNAs (lncRNAs). LncRNAs, little or no coding potential, are defined as capped transcripts longer than 200 nucleotides. New sequencing technologies have shown that a large number of aberrantly expressed lncRNAs are associated with multiple cancer types and indicated they have emerged as an important class of pervasive genes during the development and progression of cancer. However, the underlying mechanism in cancer is still unknown. Therefore, it is necessary to elucidate the lncRNA function. Notably, many lncRNAs dysregulation are associated with Oral squamous cell carcinoma (OSCC) and affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review expounds the up- or down-regulation of lncRNAs in OSCC and the molecular mechanisms by which lncRNAs perform their function in the malignant cell. Finally, the potential of lncRNAs as non-invasive biomarkers for OSCC diagnosis are also described. LncRNAs hold promise as prospective novel therapeutic targets, but more research is needed to gain a better understanding of their biologic function.
Journal Article
Optimization of constructed wetlands on purifying black-odorous water and their potential purification mechanism
by
Chen, Chun-xing
,
A, Dan
,
Deng, Yang-yang
in
Aerobic capacity
,
Aerobic processes
,
artificial wetland
2022
Black-odorous water has become a common and widespread problem in recent decades. In this study, nine constructed wetlands (CWs) with different flow types, filters, plants, and hydraulic loadings were designed according to an orthogonal array (L9 (34), and were used for the purification of black-odorous water in summer and winter. The results showed that CWs are regarded as effective to purify black-odorous water in both seasons. Microbial degradation is the major removal pathway of pollutants in CWs during summer, while the joint effect of biodegradation and adsorption is the main treatment route during winter. Flow type and hydraulic loading appear to be the most important factors impacting the purification performance of CWs, by changing the redox condition of systems and retention time of contaminants, respectively. ‘Vertical flow-zeolite filter-high loading’ is proposed as the best parameter selection for CWs on the purification of black-odorous water: among them, CWs with vertical flow have better oxygen transport capacity that is conductive to aerobic processes of pollutants, zeolite substrates may adsorb more nitrogen via ion exchange, higher hydraulic loadings can extend the contact time between contaminants and filters, and regulate the water temperature for microbial activity.
Journal Article
Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification
by
Chen, Guang-Hao
,
Cui, Yan-Xiang
,
Guo, Gang
in
Biogeochemistry
,
Biological activity
,
Biomedical and Life Sciences
2019
Biological denitrification process in mainstream wastewater treatment often needs dosing supplemental electrons, consequently adding a remarkable operating cost. Organic carbon compounds are nowadays the most intensively used electron sources in full-scale wastewater treatment, corresponding with the well-understood carbon-nitrogen biogeochemistry for heterotrophic denitrification process. In the twenty-first century, the low-carbon technology is on calling to reduce the carbon footprint and relieve climate changing threatens. Autotrophic denitrification is highly recommended for mainstream wastewater treatment. The reduced-sulphur compounds (such as sulphide, elemental sulphur, and thiosulphate) could be utilised as electron donors, to drive sulphur cycle reactions to reduce nitrate and nitrite to dinitrogen gas. Based on the literature review and our own research experiences, this paper presents our perspectives on sulphur-driven autotrophic denitrification. It particularly focuses on the functional enzymes, sulphur bioreactors, and influential operating factors. Overall, this paper provides new insights on sulphur-nitrogen biogeochemistry and application as a low-carbon technology for nitrogen removal during municipal wastewater treatment.
Journal Article