Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Denney, Ashley S."
Sort by:
Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast
2021
Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here, we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.
Journal Article
Transcription errors induce proteotoxic stress and shorten cellular lifespan
2015
Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitor yeast cells that are genetically engineered to display error-prone transcription. We discover that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease phenotypes. We further find that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer's disease, and shorten the lifespan of cells. These experiments reveal a previously unappreciated role for transcriptional fidelity in cellular health and aging.
Transcription, like DNA replication, is an error-prone process. Vermulst
et al.
show that transcription errors increase with age in yeast, and find that prematurely increasing the error rate overwhelms the proteotoxic stress response, allowing aggregation-prone proteins to escape protein quality control.
Journal Article
Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules
2021
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of “chemical rescue” by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from “off-target” effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Journal Article
Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast
by
Mcmurray, Michael A
,
Denney, Ashley S
,
Weems, Andrew D
in
Chaperones
,
Genetics
,
High temperature
2021
Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate three-dimensional structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here we build upon our septin studies to develop a new approach to identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Chaperone inhibition liberates the mutant to enter the nucleus where it has a slight dominant-negative effect. These findings provide new insights into the effects of missense mutations.
Chemical rescue of mutant proteins in living cells by naturally occurring small molecules
by
Hassell, Daniel S
,
Johnson, Courtney R
,
Denney, Ashley S
in
Amino acid sequence
,
Cofactors
,
Environmental conditions
2021
Abstract Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here we used a combination of targeted and unbiased approaches to look for other cases of “chemical rescue” by naturally occurring small molecules. We report in vivo rescue of hundreds of yeast mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from “off-target” effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Correction: Corrigendum: Transcription errors induce proteotoxic stress and shorten cellular lifespan
by
Madden, Victoria
,
Holczbauer, Agnes
,
Hung, Chao-Wei
in
corrigendum
,
Erratum
,
Humanities and Social Sciences
2015
Nature Communications 6, Article number: 8065 (2015); Published 25 August 2015; Updated 14 October 2015 The original version of this Article contained an error in the spelling of the authors J. Will Thompson and M. Arthur Moseley, which were incorrectly given as William J. Thompson and Arthur M. Mosely.
Journal Article
Takotsubo Cardiomyopathy Following Traumatic Hand Amputation: A Case Report
by
Pigott, David
,
Gullett, John
,
Thomspon, Mawell
in
Amputation
,
Cardiomyopathy
,
Cardiovascular disease
2022
Introduction: Takotsubo or stress cardiomyopathy is a syndrome of transient left ventricular systolic dysfunction seen in the absence of obstructive coronary artery disease. Case Report: We describe a case of stress cardiomyopathy diagnosed in the emergency department (ED) using point-of-care ultrasound associated with traumatic hand amputation. The patient suffered a near-complete amputation of the right hand while using a circular saw, subsequently complicated by brief cardiac arrest with rapid return of spontaneous circulation. Point-of-care ultrasonography in the ED revealed the classic findings of takotsubo cardiomyopathy, including apical ballooning of the left ventricle and hyperkinesis of the basal walls with a severely reduced ejection fraction. After formalization of the amputation and cardiovascular evaluation, the patient was discharged from the hospital in stable condition 10 days later. Conclusion: Emergency physicians should be aware of the possibility of stress cardiomyopathy as a cause for acute decompensation, even in isolated extremity trauma.
Journal Article