Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
154 result(s) for "Depner, Klaus"
Sort by:
Epidemiological considerations on African swine fever in Europe 2014–2018
In 2007 African swine fever (ASF) arrived at a Black Sea harbour in Georgia and in 2014 the infection reached the European Union (EU), where it still expands its territory. ASF is a fatal viral disease affecting domestic pigs and wild boar of all ages with clinical presentations ranging from per-acute to chronic disease, including apparently asymptomatic courses. Until the detection of the first case inside the EU, infections in the current epidemic were mainly seen among pig farms with generally low biosecurity, and with incidental spill over to the wild boar population. In the EU, however, the infection survived locally in the wild boar population independently from outbreaks in domestic pigs, with a steady and low prevalence. Apart from the wild boar population and the habitat, the current epidemic recognizes humans as the main responsible for both long distance transmission and virus introduction in the domestic pig farms. This underlines the importance to include social science when planning ASF-prevention, −control, or -eradication measures. Based on experiences, knowledge and data gained from the current epidemic this review highlights some recent developments in the epidemiological understanding of ASF, especially concerning the role of wild boar and their habitats in ASF epidemiology. In this regard, the qualities of three epidemiological traits: contagiousity, tenacity, and case fatality rate, and their impact on ASF persistence and transmission are especially discussed.
Development of African swine fever epidemic among wild boar in Estonia - two different areas in the epidemiological focus
African swine fever (ASF) in wild boar emerged in Estonia for the first time in September 2014. The first affected region was located in the South of Estonia close to the border with Latvia. It was considered to be epidemiologically connected to the outbreaks in the North of Latvia. About two weeks later, cases were detected in the North of Estonia, close to the Russian border. In the present study, we aimed to investigate the epidemiological courses of the disease in the South and in the North of Estonia. Potential associations between risk factors and the laboratory test results for ASF were examined. A hierarchical Bayesian space–time model was used to analyze the temporal trend of the ASF seroprevalence in the two areas. Young wild boar were statistically significant more likely to be ASF-positive by both, serology and virus detection, than older animals. A statistically significant difference between the two areas in the temporal course of the seroprevalence was found. While the seroprevalence clearly increased in the South, it remained relatively constant in the North. These findings led to the hypothesis that ASF might have been introduced earlier into the North of Estonia then into the South of the country.
African Swine Fever in Wild Boar in Europe—A Review
The introduction of genotype II African swine fever (ASF) virus, presumably from Africa into Georgia in 2007, and its continuous spread through Europe and Asia as a panzootic disease of suids, continues to have a huge socio-economic impact. ASF is characterized by hemorrhagic fever leading to a high case/fatality ratio in pigs. In Europe, wild boar are especially affected. This review summarizes the currently available knowledge on ASF in wild boar in Europe. The current ASF panzootic is characterized by self-sustaining cycles of infection in the wild boar population. Spill-over and spill-back events occur from wild boar to domestic pigs and vice versa. The social structure of wild boar populations and the spatial behavior of the animals, a variety of ASF virus (ASFV) transmission mechanisms and persistence in the environment complicate the modeling of the disease. Control measures focus on the detection and removal of wild boar carcasses, in which ASFV can remain infectious for months. Further measures include the reduction in wild boar density and the limitation of wild boar movements through fences. Using these measures, the Czech Republic and Belgium succeeded in eliminating ASF in their territories, while the disease spread in others. So far, no vaccine is available to protect wild boar or domestic pigs reliably against ASF.
Evidence-Based African Swine Fever Policies: Do We Address Virus and Host Adequately?
African swine fever (ASF) is one of the most threatening diseases for the pig farming sector worldwide. Prevention, control and eradication remain a challenge, especially in the absence of an effective vaccine or cure and despite the relatively low contagiousness of this pathogen in contrast to Classical Swine Fever or Foot and Mouth disease, for example. Usually lethal in pigs and wild boar, this viral transboundary animal disease has the potential to significantly disrupt global trade and threaten food security. This paper outlines the importance of a disease-specific legal framework, based on the latest scientific evidence in order to improve ASF control. It compares the legal basis for ASF control in a number of pig-producing regions globally, considering diverse production systems, taking into account current scientific evidence in relation to ASF spread and control. We argue that blanket policies that do not take into account disease-relevant characteristics of a biological agent, nor the specifics under which the host species are kept, can hamper disease control efforts and may prove disproportionate.
Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017
Here, we report on the occurrence of highly pathogenic avian influenza (HPAI) H5Nx clade 2.3.4.4b in Germany. Between November 8, 2016, and September 30, 2017, more than 1,150 cases of HPAI H5Nx clade 2.3.4.4b in wild birds and 107 outbreaks in birds kept in captivity (92 poultry holdings and 15 zoos/animal parks) were reported in Germany. This HPAI epidemic is the most severe recorded in Germany so far. The viruses were apparently introduced by migratory birds, sparking an epidemic among wild birds across Germany with occasional incursions into poultry holdings, zoos and animal parks, which were usually rapidly detected and controlled by stamping out. HPAI viruses (mainly subtype H5N8, in a few cases also H5N5) were found in dead wild birds of at least 53 species. The affected wild birds were water birds (including gulls, storks, herons, and cormorants) and scavenging birds (birds of prey, owls, and crows). In a number of cases, substantial gaps in farm biosecurity may have eased virus entry into the holdings. In a second wave of the epidemic starting from February 2017, there was epidemiological and molecular evidence for virus transmission of the infections between commercial turkey holdings in an area of high poultry density, which caused approximately 25% of the total number of outbreaks in poultry. Biosecurity measures in poultry holdings should be adapted. This includes, , wearing of stable-specific protective clothing and footwear, cleaning, and disinfection of equipment that has been in contact with birds and prevention of contacts between poultry and wild water birds.
Implications of partial culling on African swine fever control effectiveness in Vietnam
The introduction of the African swine fever (ASF) into previously unaffected countries often overwhelms veterinary authorities with the resource demanding control efforts that need to be undertaken. The approach of implementing total stamping out of affected herds is taken as “default” control measure in many countries, regardless of the transboundary animal disease addressed, leading to a variety of challenges when implemented. Apart from the organizational challenges and high demand for human and financial resources, the total stamping out approach puts a high burden on the livelihoods of the affected farmers. After the spread of ASF throughout the country in 2019, Vietnam changed the culling approach enabling partial culling of only affected animals in the herd, in order to save resources, and reduce the environmental impact because of the carcass disposal and allow farmers to protect valuable assets. Until now, field data comparing these disease control options in their performance during implementation has not been evaluated scientifically. Analyzing the effect of the change in a control policy, the present study concludes that partial culling can on average save over 50% of total stock with an 8-day prolongation of the implementation of control measures. With 58% of farms undergoing partial culling scoring high on a time-livelihoods matrix, while total stamping out fails to score on livelihoods, much-needed clarity on the livelihood-protecting effects of alternative culling strategies is given. In the future, this will allow veterinary authorities to adjust control measures according to differing priorities, targeting peculiarities of ASF and acknowledging resource constraints faced.
Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018)
This update on the African swine fever (ASF) outbreaks in the EU demonstrated that out of all tested wild boar found dead, the proportion of positive samples peaked in winter and summer. For domestic pigs only, a summer peak was evident. Despite the existence of several plausible factors that could result in the observed seasonality, there is no evidence to prove causality. Wild boar density was the most influential risk factor for the occurrence of ASF in wild boar. In the vast majority of introductions in domestic pig holdings, direct contact with infected domestic pigs or wild boar was excluded as the route of introduction. The implementation of emergency measures in the wild boar management zones following a focal ASF introduction was evaluated. As a sole control strategy, intensive hunting around the buffer area might not always be sufficient to eradicate ASF. However, the probability of eradication success is increased after adding quick and safe carcass removal. A wider buffer area leads to a higher success probability; however it implies a larger intensive hunting area and the need for more animals to be hunted. If carcass removal and intensive hunting are effectively implemented, fencing is more useful for delineating zones, rather than adding substantially to control efficacy. However, segments of fencing will be particularly useful in those areas where carcass removal or intensive hunting is difficult to implement. It was not possible to demonstrate an effect of natural barriers on ASF spread. Human‐mediated translocation may override any effect of natural barriers. Recommendations for ASF control in four different epidemiological scenarios are presented. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2018.EN-1521/full
Risk Factors and Spatiotemporal Analysis of Classical Swine Fever in Ecuador
Classical swine fever (CSF) is one of the most important re-emergent swine diseases worldwide. Despite concerted control efforts in the Andean countries, the disease remains endemic in several areas, limiting production and trade opportunities. In this study, we aimed to determine the risk factors and spatiotemporal implications associated with CSF in Ecuador. We analysed passive surveillance and vaccination campaign datasets from 2014 to 2020; Then, we structured a herd-level case–control study using a logistic and spatiotemporal Bayesian model. The results showed that the risk factors that increased the odds of CSF occurrence were the following: swill feeding (OR 8.53), time until notification (OR 2.44), introduction of new pigs during last month (OR 2.01) and lack of vaccination against CSF (OR 1.82). The spatiotemporal model showed that vaccination reduces the risk by 33%. According to the priority index, the intervention should focus on Morona Santiago and Los Rios provinces. In conclusion, the results highlight the complexity of the CSF control programs, the importance to improve the overall surveillance system and the need to inform decision-makers and stakeholders.
Innovative Research Offers New Hope for Managing African Swine Fever Better in Resource-Limited Smallholder Farming Settings: A Timely Update
African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.
African Swine Fever in a Bulgarian Backyard Farm—A Case Report
African swine fever (ASF) is one of the most threatening diseases for the pig farming sector worldwide. As an effective vaccine is lacking, strict application of control measures is the only way to fight the disease in both industrial farms and backyard holdings. With generally low biosecurity standards, the latter are at particular risk for disease introduction and offer challenging conditions for disease control. In the following case report, we describe the overall course of an ASF outbreak in a Bulgarian backyard farm and the implemented control measures. Farm facilities and available data have been investigated to estimate the possible source, spread and time point of virus introduction. Contact with contaminated fomites entering the stable via human activities was regarded to be the most likely introduction route. The slow disease spread within the farm contributes to the hypothesis of a moderate contagiosity. As no further ASF outbreaks have been detected in domestic pig farms in the region, it could be demonstrated that successful disease control in small-scale farms can be reached. Thus, the report contributes to a better understanding of ASF in the backyard sector.