Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Deshwal, Gaurav Kr"
Sort by:
An overview of paper and paper based food packaging materials: health safety and environmental concerns
Pulp and paper industry is one of the major sector in every country of the globe contributing not only to Gross Domestic Product but surprisingly to environmental pollution and health hazards also. Paper and paperboard based material is the one of the earliest and largest used packaging form for food products like milk and milk based products, beverages, dry powders, confectionary, bakery products etc. owing to its eco-friendly hallmark. Various toxic chemicals like printing inks, phthalates, surfactants, bleaching agents, hydrocarbons etc. are incorporated in the paper during its development process which leaches into the food chain during paper production, food consumption and recycling through water discharges. Recycling is considered the best option for replenishing the loss to environment but paper can be recycled maximum six to seven times and paper industry waste is very diverse in nature and composition. Various paper disposal methods like incineration, landfilling, pyrolysis and composting are available but their process optimization becomes a barrier. This review article aims at discussing in detail the use of paper and paper based packaging materials for food applications and painting a wide picture of various health and environmental issues related to the usage of paper and paper based packaging material in food industry. A brief comparison of the environmental aspects of paper production, recycling and its disposal options (incineration and land filling) had also been discussed.
Review on metal packaging: materials, forms, food applications, safety and recyclability
Metal based packaging materials provide excellent barrier properties and hence, being used widely in food packaging applications. They are used in different package forms and also as closures such as for glass bottles and composite cans. Major health and product safety concerns of metal packaging comprise migration of bisphenol A, lead, cadmium, mercury, aluminium, iron, nickel, bulging of cans, tin dissolution, blackening and corrosion. Metals are not inert to food products, hence coated with protective lacquers to prevent metal–food interaction and migration of metal components. Metal packaging materials have lower global warming potential and higher recyclability due to their magnetic properties which helps in easier segregation. An attempt has been made in this article to review the metal packaging materials used in food industry and Indian Standard specifications, their safety and recyclability aspects.
A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species
Milk from different species has been exploited for the isolation of various functional ingredients for decades. Irrespective of the source, milk is considered as a complete food, as it provides essential nutrients required by the human body. Proteins and their fractions are valuable sources of bioactive peptides that might exert a health beneficial role in the human body such as immune-modulation, antioxidant activity, ACE-inhibitory activity, anti-neoplastic, anti-microbial, etc. In milk, bioactive peptides may either be present in their natural form or released from their parental proteins due to enzymatic action. The increasing interest in bioactive peptides among researchers has lately augmented the exploration of minor dairy species such as sheep, goat, camel, mithun, mare, and donkey. Alternative to cow, milk from minor dairy species have also been proven to be healthier from infancy to older age owing to their higher digestibility and other nutritive components. Therefore, realizing the significance of milk from such species and incentivized interest towards the derivatization of bioactive peptides, the present review highlights the significant research achievements on bioactive peptides from milk and milk products of minor dairy species. Graphical abstract
A Review on the Effect of Calcium Sequestering Salts on Casein Micelles: From Model Milk Protein Systems to Processed Cheese
Phosphates and citrates are calcium sequestering salts (CSS) most commonly used in the manufacture of processed cheese, either singly or in mixtures. Caseins are the main structure forming elements in processed cheese. Calcium sequestering salts decrease the concentration of free calcium ions by sequestering calcium from the aqueous phase and dissociates the casein micelles into small clusters by altering the calcium equilibrium, thereby resulting in enhanced hydration and voluminosity of the micelles. Several researchers have studied milk protein systems such as rennet casein, milk protein concentrate, skim milk powder, and micellar casein concentrate to elucidate the influence of calcium sequestering salts on (para-)casein micelles. This review paper provides an overview of the effects of calcium sequestering salts on the properties of casein micelles and consequently the physico-chemical, textural, functional, and sensorial attributes of processed cheese. A lack of proper understanding of the mechanisms underlying the action of calcium sequestering salts on the processed cheese characteristics increases the risk of failed production, leading to the waste of resources and unacceptable sensorial, appearance, and textural attributes, which adversely affect the financial side of processors and customer expectations.
Utilization of Cereal Crop Residues, Cereal Milling, Sugarcane and Dairy Processing By-Products for Sustainable Packaging Solutions
Residues and by-products are the unavoidable outputs of cereal, sugarcane and dairy processing industry which can be resorted economically. Widespread focus on plastic replacement, residue burning and waste reduction had led to characterization and identification of by-products for economic packaging applications. Extensive research work had been done on whey usage in eco-friendly packaging but packaging applications of cereal crop residues, cereal milling by-products and sugarcane bagasse are still in nascent stage. However, research studies on extraction and exploitation of cellulose, hemicellulose and other film forming components from these by-products had been reported for packaging applications but described processes have low techno-commerciality. Current status and innovations in utilization of cereal residue (rice straw, wheat straw and corn cob), cereal milling by-products (husk, hull and bran), sugarcane processing waste (bagasse and sugar beet pulp) and whey based packaging applications as well as application in bio-composites, are discussed briefly in this review.
Soluble Salts in Processed Cheese Prepared with Citrate- and Phosphate-Based Calcium Sequestering Salts
In this study, the protein and salts distribution (Ca, P, Na and Mg) in processed cheese (PC) samples prepared with 180 or 360 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), disodium pyrophosphate (DSPP), sodium hexametaphosphate (SHMP) and trisodium citrate (TSC) was studied. For this purpose, a water-soluble extract (WSE) of PC samples was prepared. All PC samples contained 45–46% moisture, 26–27% fat and 20–21% protein and had a pH of 5.2 or 5.7. Ultracentrifugation slightly reduced the protein content of the WSE of PC, indicating that most protein in the WSE was non-sedimentable. At equal concentration of CSS, the protein content of the WSE was higher for PC at pH 5.7 compared to PC at pH 5.2. Approximately 55–85% of the Ca and P in the WSE of samples was 10 kDa-permeable for PC prepared with DSPP and SHMP. This suggests that the formation of non-permeable Ca–polyphosphate–casein complexes. For PC prepared with TSC, >90% of Ca in the WSE was 10 kDa-permeable, indicating that micellar disruption arises from sequestration of micellar Ca. These results indicate that the WSE method is an appropriate method to understand how salts present in PC are distributed. However, the WSE and ultracentrifugal supernatant of the WSE can include both soluble and protein-associated salts. Therefore, determining levels of salts in 10 kDa permeate of ultracentrifugal supernatant of the WSE is most appropriate.
Eggnog: process optimization and characterization of a dairy-based beverage
Eggnog, a dairy-based beverage, comprises both milk and egg proteins. We aimed at optimizing the eggnog formulation using Box–Behnken design of response surface methodology. The combined effects of milk (60–75), cream (25–35) and eggnog base (6–8, all three as g 100/ml) were investigated on heat coagulation time, viscosity and thermal gelation temperature. ANOVA indicated that experimental data were well explained by a quadratic model with high check values (R2 > 0.94) and non-significant lack of fit tests. Based on the responses, an optimized formulation of eggnog with 60.0 milk, 25.0 cream and 6.50 eggnog base (as g 100/ml), could be considered best for manufacturing eggnog with desired attributes. This optimized formulation was characterized for physico-chemical, microbial and sensory attributes and the results indicated significantly higher fat and protein content than control formulation, but lesser lactose and total sugar content. Significantly higher viscosity, heat stability and lower thermal gelation temperature were also observed for the optimized formulation. Coliform, yeast and mold, E. coli and Salmonella counts were not detected in any sample but a significantly lower total plate count was observed for the optimized formulation.
Electrospun Smart Oxygen Indicating Tag for Modified Atmosphere Packaging Applications: Fabrication, Characterization and Storage Stability
Pack integrity is essential for the success of modified atmosphere packaging of food products. Colorimetric oxygen leak indicators or tags are simple and smart tools that can depict the presence or absence of oxygen within a package. However, not many bio-based electrospun materials were explored for this purpose. Ultraviolet light-activated kappa-carrageenan-based smart oxygen indicating tag was developed using the electrospinning technique in this study and its stability during storage was determined. Kappa-carrageenan was used with redox dye, sacrificial electron donor, photocatalyst, and solvent for preparing oxygen indicating electrospun tag. Parameters of electrospinning namely flow rate of the polymer solution, the distance between spinneret and collector, and voltage applied were optimized using Taguchi L9 orthogonal design. Rheological and microstructural studies revealed that the electrospinning solution was pseudoplastic and the mat fibers were compact and non-woven with an average fiber size of 1–2 microns. Oxygen sensitivity at different oxygen concentrations revealed that the tag was sensitive enough to detect as low as 0.4% oxygen. The developed tag was stable for at least 60 days when stored in dark at 25 °C and 65% RH. The developed mat could be highly useful in modified atmosphere packaging applications to check seal integrity in oxygen devoid packages.
Distribution of Salts in Milk and Cheese: Critical Methodological Aspects
The salt fractions of milk consist of cations (e.g., Ca, Mg, and Na) and anions (e.g., phosphate, citrate, and chloride). These salts are present as free ions or in complexes with other ions or proteins, primarily the caseins. Furthermore, significant levels of Ca and phosphate are also found in insoluble form, inside the casein micelles. The distribution of salts between this micellar phase and the soluble phase is important for the stability and properties of milk and dairy products. Various processes, such as (ultra-)centrifugation, (ultra-)filtration, dialysis, and selective precipitation have been used to separate the micellar and soluble phases in milk and dairy products to allow for studying the salts’ distribution between these phases. These different methods can lead to different levels of soluble salts because the salts in the supernatant from centrifugation, the permeate from ultrafiltration, and the diffusate from dialysis can differ notably. Hence, understanding which components are fractionated with these techniques and how this affects the levels of the soluble salts determined is critical for milk and dairy products. Applying the aforementioned methods to cheese products is further challenging because these methods are primarily developed for fractionating the soluble and micellar phases of milk. Instead, methods that analyze salts in water-soluble extracts, or soluble phases expressed from cheese by pressing or centrifugation are typically used. This review focuses on the significance of salt distribution and variations in salt fractions obtained using different methodologies for both milk and cheese.
Applications of reverse osmosis in dairy processing: an Indian perspective
The Indian dairy industry is highly diversified in terms of milk production, collection, processing and waste disposal. Membrane processing allows dairy sector to manufacture high quality nutritive dairy products at lower costs with minimum water use and product losses. Compared to prevailing traditional methods of milk concentration, reverse osmosis (RO) is still evolving, finding newer applications in dairy processing because of its potential benefits. A brief overview of RO, membranes, process variables, fouling, merits and demerits along with potential suppliers and membrane utilizing dairy plants in India are systematically presented in this review. Different applications of RO in dairy industry including concentration of liquid dairy streams, further utilization of RO retentate in formulation of ice-cream, dahi, traditional Indian dairy products, cheese and dried powders is also included. RO can play a prominent role in Indian dairy sector for simplifying the process automation, product diversification and efficient waste utilization.