Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
88
result(s) for
"Desloovere, Kaat"
Sort by:
The use of protein supplements in children with cerebral palsy: A scoping literature review
2025
The aim of this scoping review was to examine the literature regarding the use of protein supplements to improve macroscopic muscle properties in a pediatric population in general, and more specifically in children with cerebral palsy. Based on our prospectively registered protocol ( https://doi.org/10.17605/OSF.IO/8DM9G ), a systematic literature search was performed in five databases and two clinical registers. Studies were selected by two independent reviewers using predefined selection criteria, and data were summarized using a data extraction form. A broader search on adults with cerebral palsy and the general pediatric population was considered to be relevant due to the limited number of studies conducted in children with cerebral palsy. After deduplication, 5207 records were identified and screened. A total of 18 publications were included in the current review. Two studies were performed in individuals with cerebral palsy, eight in healthy children, two in children with respiratory problems, one in critically ill children, one in children with end-stage liver disease, one in children and adolescents undergoing treatment for a pediatric malignancy, one in children with Pompe disease and two in children with Duchenne muscular dystrophy. The different muscle parameters reported were muscle volume, muscle mass, fat-free mass and fat-free mass index, lean body mass and lean body mass percentage, arm muscle area and muscle cross-sectional area of the arm, thigh and calf. The heterogeneity of the included studies and their moderate quality level made it difficult to draw solid overall conclusions. More research is needed on the use of protein supplements in children with cerebral palsy. However, supplementation with branched-chain amino acids, in particular leucine, might be promising.
Journal Article
Are spasticity, weakness, selectivity, and passive range of motion related to gait deviations in children with spastic cerebral palsy? A statistical parametric mapping study
by
Desloovere, Kaat
,
Molenaers, Guy
,
Simon-Martinez, Cristina
in
Analysis
,
Ankle
,
Biology and Life Sciences
2019
This study aimed to identify the relationships between clinical impairments and gait deviations in children with cerebral palsy (CP). A retrospective convenience sample of 367 children with CP was selected (3-18 years old) and divided in two groups based on clinical symptomatology [unilateral (uCP) / bilateral CP (bCP), (n = 167/200)]. All children underwent a three-dimensional gait analysis and a standardized clinical examination. Gait was inspected on a vector level (all sagittal motions combined), and an individual joint level (pelvis, hip, knee and ankle joint motions). Statistical non-parametric mapping was applied to identify specific parts of the gait cycle displaying relationships between the gait deviations of both groups and the impairment scores of spasticity, weakness, selectivity, and passive range of motion. Impairment scores were summarized in two ways: a) composite impairment scores (e.g. combined spasticity of all assessed muscles acting around the hip, knee and ankle joints) and b) joint specific impairment scores (e.g. spasticity of the muscles acting around the knee joint). Results showed that the vector and most of the individual motions were related to the composite scores. Direct and carry-over relationships were found between certain individual motions and joint impairment scores (around the same or neighboring joints, respectively). All correlations were more prominent for children with bCP compared to uCP, especially regarding the relationships of gait deviations with weakness and reduced selectivity. In conclusion, this study enabled the mapping of relationships between clinical impairments and gait deviations in children with CP, by identifying specific parts of the gait cycle that are related to each of these impairments. These results provide a comprehensive description of these relationships, while simultaneously highlighting the differences between the two CP groups. Integration of these findings could lead to a better understanding of the pathophysiology of gait deviations and, eventually, support individualized treatment planning.
Journal Article
A spasticity model based on feedback from muscle force explains muscle activity during passive stretches and gait in children with cerebral palsy
by
Desloovere, Kaat
,
Bar-On, Lynn
,
Falisse, Antoine
in
Acceleration
,
Analysis
,
Biology and Life Sciences
2018
Muscle spasticity is characterized by exaggerated stretch reflexes and affects about 85% of the children with cerebral palsy. However, the mechanisms underlying spasticity and its influence on gait are not well understood. Here, we first aimed to model the response of spastic hamstrings and gastrocnemii in children with cerebral palsy to fast passive stretches. Then, we evaluated how the model applied to gait. We developed three models based on exaggerated proprioceptive feedback. The first model relied on feedback from muscle fiber length and velocity (velocity-related model), the second model relied on feedback from muscle fiber length, velocity, and acceleration (acceleration-related model), and the third model relied on feedback from muscle force and its first time derivative (force-related model). The force-related model better reproduced measured hamstrings and gastrocnemii activity during fast passive stretches (coefficients of determination (R2): 0.73 ± 0.10 and 0.60 ± 0.13, respectively, and root mean square errors (RMSE): 0.034 ± 0.031 and 0.009 ± 0.007, respectively) than the velocity-related model (R2: 0.46 ± 0.15 and 0.07 ± 0.13, and RMSE: 0.053 ± 0.051 and 0.015 ± 0.009), and the acceleration-related model (R2: 0.47 ± 0.15 and 0.09 ± 0.14, and RMSE: 0.052 ± 0.050 and 0.015 ± 0.008). Additionally, the force-related model predicted hamstrings and gastrocnemii activity that better correlated with measured activity during gait (cross correlations: 0.82 ± 0.09 and 0.85 ± 0.06, respectively) than the activity predicted by the velocity-related model (cross correlations: 0.49 ± 0.17 and 0.71 ± 0.22) and the acceleration-related model (cross correlations: 0.51 ± 0.16 and 0.67 ± 0.20). Our results therefore suggest that force encoding in muscle spindles in combination with altered feedback gains and thresholds underlie activity of spastic muscles during passive stretches and gait. Our model of spasticity opens new perspectives for studying movement impairments due to spasticity through simulation.
Journal Article
Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy
2016
Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy.
Journal Article
Muscle synergies demonstrate only minimal changes after treatment in cerebral palsy
by
Desloovere, Kaat
,
Goudriaan, Marije
,
Steele, Katherine M.
in
Analysis
,
Biofeedback
,
Biomechanical Phenomena
2019
Background
Children with cerebral palsy (CP) have altered synergies compared to typically-developing peers, reflecting different neuromuscular control strategies used to move. While these children receive a variety of treatments to improve gait, whether synergies change after treatment, or are associated with treatment outcomes, remains unknown.
Methods
We evaluated synergies for 147 children with CP before and after three common treatments: botulinum toxin type-A injection (
n
= 52), selective dorsal rhizotomy (
n
= 38), and multi-level orthopaedic surgery (
n
= 57). Changes in synergy complexity were measured by the number of synergies required to explain > 90% of the total variance in electromyography data and total variance accounted for by one synergy. Synergy weights and activations before and after treatment were compared using the cosine similarity relative to average synergies of 31 typically-developing (TD) peers.
Results
There were minimal changes in synergies after treatment despite changes in walking patterns. Number of synergies did not change significantly for any treatment group. Total variance accounted for by one synergy increased (i.e., moved further from TD peers) after botulinum toxin type-A injection (1.3%) and selective dorsal rhizotomy (1.9%), but the change was small. Synergy weights did not change for any treatment group (average 0.001 ± 0.10), but synergy activations after selective dorsal rhizotomy did change and were less similar to TD peers (− 0.03 ± 0.07). Only changes in synergy activations were associated with changes in gait kinematics or walking speed after treatment. Children with synergy activations more similar to TD peers after treatment had greater improvements in gait.
Conclusions
While many of these children received significant surgical procedures and prolonged rehabilitation, the minimal changes in synergies after treatment highlight the challenges in altering neuromuscular control in CP. Development of treatment strategies that directly target impaired control or are optimized to an individual’s unique control may be required to improve walking function.
Journal Article
Botulinum Neurotoxin A-Induced Muscle Morphology Changes in Children with Cerebral Palsy: A One-Year Follow-Up Study
by
Vandekerckhove, Ines
,
Desloovere, Kaat
,
De Beukelaer, Nathalie
in
botulinum neurotoxin type A
,
Botulinum toxin type A
,
Botulinum Toxins, Type A - therapeutic use
2025
Botulinum neurotoxin type A (BoNT-A) is widely used to reduce spasticity in children with cerebral palsy. Despite its therapeutic benefits, incomplete muscle recovery has been observed post-treatment. This study evaluated longitudinal BoNT-A effects on muscle morphology over one year in children with CP (n = 26, mean age: 5.19 years ± 3.26). Three-dimensional freehand ultrasound assessed medial gastrocnemius muscle volume (MV), muscle belly length (ML), cross-sectional area (CSA), and echo intensity (EI) at baseline and at 3, 6, and 12 months post-BoNT-A. Z-score normalization accounted for natural muscle growth. Linear mixed models analyzed muscular changes over time, and repeated-measures ANOVA compared muscle parameters to an age- and severity-matched control group (n = 26, mean age: 4.98 ± 2.15) at one-year follow-up. MV exhibited a declining trend at 3 (p = 0.005), 6 (p = 0.003), and 12 months (p = 0.007), while ML remained unchanged throughout follow-up (p = 0.95). The initially reduced CSA at 6 months (p = 0.0005) recovered at one year, and EI increased only at 3 months post-BoNT-A (p < 0.0001). At one-year follow-up, there was a trend for reduced growth rate (MV/month) (p = 0.035) in the intervention group, whereas the control group exhibited an increased muscle growth (p = 0.029). These findings suggest distinct recovery timelines for CSA and ML, which may explain the incomplete MV recovery and highlight substantial interindividual variation in recovery processes.
Journal Article
Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy
by
Desloovere, Kaat
,
Molenaers, Guy
,
Nieuwenhuys, Angela
in
Adolescent
,
Analysis
,
Biology and Life Sciences
2017
Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with 'no or minor gait deviations' (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with 'no or minor gait deviations' differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made.
Journal Article
Reliability of the balance evaluation systems test and trunk control measurement scale in adult spinal deformity
2019
To test the reliability of the Balance Evaluation Systems Test (BESTest) and Trunk Control Measurement Scale (TCMS) between sessions and raters in the adult spinal deformity (ASD) population.
Up to now evaluation in ASD was mainly based on static radiographic parameters. Recently literature showed that dynamic balance was a better predictor of health-related quality of life than radiographic parameters, stressing the importance of balance assessment. However, to the best of our knowledge, reliability of balance assessment tools has not yet been investigated in the ASD population.
Twenty ASD patients participated in this study. Ten patients were included in the test-retest study, including repeated measurements. Ten patients were measured once, simultaneously but independently by three raters. Each participant performed two balance scales, namely the BESTest and the TCMS. Statistical analysis consisted of intra class correlations (ICC) on scale- and subscale level, and kappa scores on item-level. Cronbach's alpha on total scores, standard errors of measurement (SEM), smallest detectable differences and percentages of agreement were also calculated. Bland-altman plots were created to investigate systematic bias.
ICC scores between sessions and raters for TCMS (0.76 and 0.88) and BESTest (0.90 and 0.94) total scores were good to excellent. SEM's between sessions and raters were also low for total scores on TCMS (1.66 and 2.35) and BESTest (2.99 and 2.32). However, on subscale- and item-level reliability decreased and ceiling effects were observed. No systematic bias was observed between sessions and raters.
BESTest and TCMS showed to be reliable tools to measure balance in ASD on scale-level. However, on subscale- and item-level reliability decreased and ceiling effects were observed. Therefore, the question arises if there is need for an ASD-specific balance scale.
Journal Article
Physics-Based Simulations to Predict the Differential Effects of Motor Control and Musculoskeletal Deficits on Gait Dysfunction in Cerebral Palsy: A Retrospective Case Study
by
Hallemans, Ann
,
Desloovere, Kaat
,
Hoang, Hoa
in
Bone surgery
,
Cerebral palsy
,
computational biomechanics
2020
Physics-based simulations of walking have the theoretical potential to support clinical decision-making by predicting the functional outcome of treatments in terms of walking performance. Yet before using such simulations in clinical practice, their ability to identify the main treatment targets in specific patients needs to be demonstrated. In this study, we generated predictive simulations of walking with a medical imaging based neuro-musculoskeletal model of a child with cerebral palsy presenting crouch gait. We explored the influence of altered muscle-tendon properties, reduced neuromuscular control complexity, and spasticity on gait dysfunction in terms of joint kinematics, kinetics, muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon properties by personalizing Hill-type muscle-tendon parameters based on data collected during functional movements, simpler neuromuscular control by reducing the number of independent muscle synergies, and spasticity through delayed muscle activity feedback from muscle force and force rate. Our simulations revealed that, in the presence of aberrant musculoskeletal geometries, altered muscle-tendon properties rather than reduced neuromuscular control complexity and spasticity were the primary cause of the crouch gait pattern observed for this child, which is in agreement with the clinical examination. These results suggest that muscle-tendon properties should be the primary target of interventions aiming to restore an upright gait pattern for this child. This suggestion is in line with the gait analysis following muscle-tendon property and bone deformity corrections. Future work should extend this single case analysis to more patients in order to validate the ability of our physics-based simulations to capture the gait patterns of individual patients pre- and post-treatment. Such validation would open the door for identifying targeted treatment strategies with the aim of designing optimized interventions for neuro-musculoskeletal disorders.
Journal Article
Combined translational and rotational perturbations of standing balance reveal contributions of reduced reciprocal inhibition to balance impairments in children with cerebral palsy
by
Desloovere, Kaat
,
Ting, Lena H.
,
Willaert, Jente
in
Ankle
,
Balance
,
Biology and Life Sciences
2024
Balance impairments are common in cerebral palsy. When balance is perturbed by backward support surface translations, children with cerebral palsy have increased co-activation of the plantar flexors and tibialis anterior muscle as compared to typically developing children. However, it is unclear whether increased muscle co-activation is a compensation strategy to improve balance control or is a consequence of reduced reciprocal inhibition. During translational perturbations, increased joint stiffness due to co-activation might aid balance control by resisting movement of the body with respect to the feet. In contrast, during rotational perturbations, increased joint stiffness will hinder balance control as it couples body to platform rotation. Therefore, we expect increased muscle co-activation in response to rotational perturbations if co-activation is caused by reduced reciprocal inhibition but not if it is merely a compensation strategy. We perturbed standing balance by combined backward translational and toe-up rotational perturbations in 20 children with cerebral palsy and 20 typically developing children. Perturbations induced forward followed by backward movement of the center of mass. We evaluated reactive muscle activity and the relation between center of mass movement and reactive muscle activity using a linear feedback model based on center of mass kinematics. In typically developing children, perturbations induced plantar flexor balance correcting muscle activity followed by tibialis anterior balance correcting muscle activity, which was driven by center of mass movement. In children with cerebral palsy, the switch from plantar flexor to tibialis anterior activity was less pronounced than in typically developing children due to increased muscle co-activation of the plantar flexors and tibialis anterior throughout the response. Our results thus suggest that a reduction in reciprocal inhibition causes muscle co-activation in reactive standing balance in children with cerebral palsy.
Journal Article