Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
118
result(s) for
"Devault, Travis L."
Sort by:
Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter
by
Beasley, James C.
,
Jordan, Heather R.
,
DeVault, Travis L.
in
animals
,
Bioaccumulation
,
Biodiversity
2019
Decomposition contributes to global ecosystem function by contributing to nutrient recycling, energy flow, and limiting biomass accumulation. The decomposer organisms influencing this process form diverse, complex, and highly dynamic communities that often specialize on different plant or animal resources. Despite performing the same net role, there is a need to conceptually synthesize information on the structure and function of decomposer communities across the spectrum of dead plant and animal resources. A lack of synthesis has limited cross-disciplinary learning and research in important areas of ecosystem and community ecology. Here we expound on the \"necrobiome\" concept and develop a framework describing the decomposer communities and their interactions associated with plant and animal resource types within multiple ecosystems. We outline the biotic structure and ecological functions of the necrobiome, along with how the necrobiome fits into a broader landscape and ecosystem context. The expanded necrobiome model provides a set of perspectives on decomposer communities across resource types, and conceptually unifies plant and animal decomposer communities into the same framework, while acknowledging key differences in processes and mechanisms. This framework is intended to raise awareness among researchers, and advance the construction of explicit, mechanistic hypotheses that further our understanding of decomposer community contributions to biodiversity, the structure and function of ecosystems, global nutrient recycling and energy flow.
Journal Article
Quantification of avian hazards to military aircraft and implications for wildlife management
by
Blackwell, Bradley F.
,
DeVault, Travis L.
,
Pfeiffer, Morgan B.
in
Aircraft
,
Aircraft accidents & safety
,
Aircraft hazards
2018
Collisions between birds and military aircraft are common and can have catastrophic effects. Knowledge of relative wildlife hazards to aircraft (the likelihood of aircraft damage when a species is struck) is needed before estimating wildlife strike risk (combined frequency and severity component) at military airfields. Despite annual reviews of wildlife strike trends with civil aviation since the 1990s, little is known about wildlife strike trends for military aircraft. We hypothesized that species relative hazard scores would correlate positively with aircraft type and avian body mass. Only strike records identified to species that occurred within the U.S. (n = 36,979) and involved United States Navy or United States Air Force aircraft were used to calculate relative hazard scores. The most hazardous species to military aircraft was the snow goose (Anser caerulescens), followed by the common loon (Gavia immer), and a tie between Canada goose (Branta canadensis) and black vulture (Coragyps atratus). We found an association between avian body mass and relative hazard score (r2 = 0.76) for all military airframes. In general, relative hazard scores per species were higher for military than civil airframes. An important consideration is that hazard scores can vary depending on aircraft type. We found that avian body mass affected the probability of damage differentially per airframe. In the development of an airfield wildlife management plan, and absent estimates of species strike risk, airport wildlife biologists should prioritize management of species with high relative hazard scores.
Journal Article
Can we use antipredator behavior theory to predict wildlife responses to high-speed vehicles?
by
Blackwell, Bradley F.
,
Fernández-Juricic, Esteban
,
Lunn, Ryan B.
in
Aircraft
,
Analysis
,
Animal behavior
2022
Animals seem to rely on antipredator behavior to avoid vehicle collisions. There is an extensive body of antipredator behavior theory that have been used to predict the distance/time animals should escape from predators. These models have also been used to guide empirical research on escape behavior from vehicles. However, little is known as to whether antipredator behavior models are appropriate to apply to an approaching high-speed vehicle scenario. We addressed this gap by (a) providing an overview of the main hypotheses and predictions of different antipredator behavior models via a literature review, (b) exploring whether these models can generate quantitative predictions on escape distance when parameterized with empirical data from the literature, and (c) evaluating their sensitivity to vehicle approach speed using a simulation approach wherein we assessed model performance based on changes in effect size with variations in the slope of the flight initiation distance (FID) vs. approach speed relationship. The slope of the FID vs. approach speed relationship was then related back to three different behavioral rules animals may rely on to avoid approaching threats: the spatial, temporal, or delayed margin of safety. We used literature on birds for goals (b) and (c). Our review considered the following eight models: the economic escape model, Blumstein’s economic escape model, the optimal escape model, the perceptual limit hypothesis, the visual cue model, the flush early and avoid the rush (FEAR) hypothesis, the looming stimulus hypothesis, and the Bayesian model of escape behavior. We were able to generate quantitative predictions about escape distance with the last five models. However, we were only able to assess sensitivity to vehicle approach speed for the last three models. The FEAR hypothesis is most sensitive to high-speed vehicles when the species follows the spatial (FID remains constant as speed increases) and the temporal margin of safety (FID increases with an increase in speed) rules of escape. The looming stimulus effect hypothesis reached small to intermediate levels of sensitivity to high-speed vehicles when a species follows the delayed margin of safety (FID decreases with an increase in speed). The Bayesian optimal escape model reached intermediate levels of sensitivity to approach speed across all escape rules (spatial, temporal, delayed margins of safety) but only for larger (> 1 kg) species, but was not sensitive to speed for smaller species. Overall, no single antipredator behavior model could characterize all different types of escape responses relative to vehicle approach speed but some models showed some levels of sensitivity for certain rules of escape behavior. We derive some applied applications of our findings by suggesting the estimation of critical vehicle approach speeds for managing populations that are especially susceptible to road mortality. Overall, we recommend that new escape behavior models specifically tailored to high-speeds vehicles should be developed to better predict quantitatively the responses of animals to an increase in the frequency of cars, airplanes, drones, etc. they will face in the next decade.
Journal Article
Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and turkey vultures (Cathartes aura)
by
Beasley, James C.
,
Byrne, Michael E.
,
Rhodes, Olin E.
in
Activity patterns
,
Aircraft
,
Animal behavior
2017
Knowledge of black vulture (Coragyps atratus) and turkey vulture (Cathartes aura) spatial ecology is surprisingly limited despite their vital ecological roles. Fine-scale assessments of space use patterns and resource selection are particularly lacking, although development of tracking technologies has allowed data collection at finer temporal and spatial resolution. Objectives of this study were to conduct the first assessment of monthly home range and core area sizes of resident black and turkey vultures with consideration to sex, as well as elucidate differences in monthly, seasonal, and annual activity patterns based on fine-scale movement data analyses. We collected 2.8-million locations for 9 black and 9 turkey vultures from June 2013 -August 2015 using solar-powered GSM/GPS transmitters. We quantified home ranges and core areas using the dynamic Brownian bridge movement model and evaluated differences as a function of species, sex, and month. Mean monthly home ranges for turkey vultures were ~50% larger than those of black vultures, although mean core area sizes did not differ between species. Turkey vulture home ranges varied little across months, with exception to a notable reduction in space-use in May, which corresponds with timing of chick-rearing activities. Black vulture home ranges and core areas as well as turkey vulture core areas were larger in breeding season months (January-April). Comparison of space use between male and female vultures was only possible for black vultures, and space use was only slightly larger for females during breeding months (February-May). Analysis of activity patterns revealed turkey vultures spend more time in flight and switch motion states (between flight and stationary) more frequently than black vultures across temporal scales. This study reveals substantive variability in space use and activity rates between sympatric black and turkey vultures, providing insights into potential behavioral mechanisms contributing to niche differentiation between these species.
Journal Article
Responses of turkey vultures to unmanned aircraft systems vary by platform
by
Buckingham, Bruce N.
,
Seamans, Thomas W.
,
Hoblet, Joshua L.
in
631/158/858
,
631/601/18
,
Aircraft
2021
A challenge that conservation practitioners face is manipulating behavior of nuisance species. The turkey vulture (
Cathartes aura
) can cause substantial damage to aircraft if struck. The goal of this study was to assess vulture responses to unmanned aircraft systems (UAS) for use as a possible dispersal tool. Our treatments included three platforms (fixed-wing, multirotor, and a predator-like ornithopter [powered by flapping flight]) and two approach types (30 m overhead or targeted towards a vulture) in an operational context. We evaluated perceived risk as probability of reaction, reaction time, flight-initiation distance (FID), vulture remaining index, and latency to return. Vultures escaped sooner in response to the fixed-wing; however, fewer remained after multirotor treatments. Targeted approaches were perceived as riskier than overhead. Vulture perceived risk was enhanced by flying the multirotor in a targeted approach. We found no effect of our treatments on FID or latency to return. Latency was negatively correlated with UAS speed, perhaps because slower UAS spent more time over the area. Greatest visual saliency followed as: ornithopter, fixed-wing, and multirotor. Despite its appearance, the ornithopter was not effective at dispersing vultures. Because effectiveness varied, multirotor/fixed-wing UAS use should be informed by management goals (immediate dispersal versus latency).
Journal Article
Effects of vulture exclusion on carrion consumption by facultative scavengers
2018
Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June–August). We used motion‐activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7‐day trials, there was a 10.1‐fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from vertebrates to decomposers. Such changes could have substantial implications for disease transmission, nutrient cycling, and ecosystem functioning. We excluded vultures from carcasses to measure the response of scavenging mammals. Mammals did not increase carrion consumption in the absence of vulture competition. Carcasses persisted longer when vultures were excluded, indicating that mammals would not functionally replace vultures as scavengers under these conditions.
Journal Article
Carcass appearance does not influence scavenger avoidance of carnivore carrion
by
Beasley, James C.
,
Rhodes, Olin E.
,
Butler-Valverde, Miranda J.
in
60 APPLIED LIFE SCIENCES
,
631/158
,
631/158/853
2022
The selection or avoidance of certain carrion resources by vertebrate scavengers can alter the flow of nutrients in ecosystems. Evidence suggests higher trophic level carrion is scavenged by fewer vertebrate species and persists longer when compared to lower trophic level carrion, although it is unclear how scavengers distinguish between carcasses of varying species. To investigate carnivore carrion avoidance and explore sensory recognition mechanisms in scavenging species, we investigated scavenger use of intact and altered (i.e., skin, head, and feet removed) coyote—
Canis latrans
(carnivore) and wild pig—
Sus scrofa
(omnivore) carcasses experimentally placed at the Savannah River Site, SC, USA. We predicted carnivore carcasses would persist longer due to conspecific and intraguild scavenger avoidance. Further, we hypothesized visually modifying carcasses would not reduce avoidance of carnivore carrion, given scavengers likely depend largely on chemical cues when assessing carrion resources. As expected, mammalian carnivores largely avoided scavenging on coyote carcasses, resulting in carnivore carcasses having longer depletion times than wild pig carcasses at intact and altered trials. Therefore, nutrients derived from carnivore carcasses are not as readily incorporated into higher trophic levels and scavengers largely depend on olfactory cues when assessing benefits and risks associated with varying carrion resources.
Journal Article
Integrating terrestrial scavenging ecology into contemporary wildlife conservation and management
by
Patterson, Jessica R.
,
Beasley, James C.
,
DeVault, Travis L.
in
Baits
,
Community Ecology
,
Conservation Ecology
2022
Scavenging plays a vital role in maintaining ecosystem health and contributing to ecological functions; however, research in this sub‐discipline of ecology is underutilized in developing and implementing wildlife conservation and management strategies. We provide an examination of the literature and recommend priorities for research where improved understanding of scavenging dynamics can facilitate the development and refinement of applied wildlife conservation and management strategies. Due to the application of scavenging research broadly within ecology, scavenging studies should be implemented for informing management decisions. In particular, a more direct link should be established between scavenging dynamics and applied management programs related to informing pharmaceutical delivery and population control through bait uptake for scavenging species, prevention of unintentional poisoning of nontarget scavenging species, the epidemiological role that scavenging species play in disease dynamics, estimating wildlife mortalities, nutrient transfer facilitated by scavenging activity, and conservation of imperiled facultative scavenging species. This commentary is intended to provide information on the paucity of data in scavenging research and present recommendations for further studies that can inform decisions in wildlife conservation and management. Additionally, we provide a framework for decision‐making when determining how to apply scavenging ecology research for management practices and policies. Due to the implications that scavenging species have on ecosystem health, and their overall global decline as a result of anthropic activities, it is imperative to advance studies in the field of scavenging ecology that can inform applied conservation and management programs. Scavenging plays a vital role in maintaining ecosystem health and contributing to ecological functions; however, research in this sub‐discipline of ecology is underutilized in developing and implementing wildlife conservation and management strategies. We provide an examination of the literature and recommend priorities for research where improved understanding of scavenging dynamics can facilitate the development and refinement of applied wildlife conservation and management strategies.
Journal Article
Landscape transformations produce favorable roosting conditions for turkey vultures and black vultures
by
Belant, Jerrold L.
,
Kellner, Kenneth F.
,
Humphrey, John S.
in
631/158/672
,
631/158/858
,
Animal behavior
2021
Recent increases in turkey vulture (
Cathartes aura
) and black vulture (
Coragyps atratus
) populations in North America have been attributed in part to their success adapting to human-modified landscapes. However, the capacity for such landscapes to generate favorable roosting conditions for these species has not been thoroughly investigated. We assessed the role of anthropogenic and natural landscape elements on roosting habitat selection of 11 black and 7 turkey vultures in coastal South Carolina, USA using a GPS satellite transmitter dataset derived from previous research. Our dataset spanned 2006–2012 and contained data from 7916 nights of roosting. Landscape fragmentation, as measured by land cover richness, influenced roosting probability for both species in all seasons, showing either a positive relationship or peaking at intermediate values. Roosting probability of turkey vultures was maximized at intermediate road densities in three of four seasons, and black vultures showed a positive relationship with roads in fall, but no relationship throughout the rest of the year. Roosting probability of both species declined with increasing high density urban cover throughout most of the year. We suggest that landscape transformations lead to favorable roosting conditions for turkey vultures and black vultures, which has likely contributed to their recent proliferations across much of the Western Hemisphere.
Journal Article
Inefficacy of mallard flight responses to approaching vehicles
by
Skaggs, Jonathon
,
Guenin, Shane
,
Fernández-Juricic, Esteban
in
60 APPLIED LIFE SCIENCES
,
Accidents, Traffic - prevention & control
,
Animal Behavior
2024
Vehicle collisions with birds are financially costly and dangerous to humans and animals. To reduce collisions, it is necessary to understand how birds respond to approaching vehicles. We used simulated ( i.e ., animals exposed to video playback) and real vehicle approaches with mallards ( Anas platyrynchos ) to quantify flight behavior and probability of collision under different vehicle speeds and times of day (day vs . night). Birds exposed to simulated nighttime approaches exhibited reduced probability of attempting escape, but when escape was attempted, fled with more time before collision compared to birds exposed to simulated daytime approaches. The lower probability of flight may indicate that the visual stimulus of vehicle approaches at night ( i.e ., looming headlights) is perceived as less threatening than when the full vehicle is more visible during the day; alternatively, the mallard visual system might be incompatible with vehicle lighting in dark settings. Mallards approached by a real vehicle exhibited a delayed margin of safety (both flight initiation distance and time before collision decreased with speed); they are the first bird species found to exhibit this response to vehicle approach. Our findings suggest mallards are poorly equipped to adequately respond to fast-moving vehicles and demonstrate the need for continued research into methods promoting effective avian avoidance behaviors.
Journal Article