Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
385
result(s) for
"Di Domizio, S."
Sort by:
Final results of CALDER: kinetic inductance light detectors to search for rare events
2021
The next generation of bolometric experiments searching for rave events, in particular for the neutrino-less double beta decay, needs fast, high-sensitivity and easy-to-scale cryogenic light detectors. The CALDER project (2014–2020) developed a new technology for light detection at cryogenic temperature. In this paper we describe the achievements and the final prototype of this project, consisting of a 5×5cm2, 650μm thick silicon substrate coupled to a single kinetic inductance detector made of a three-layer aluminum-titanium-aluminum. The baseline energy resolution is 34±1(stat)±2(syst) eV RMS and the response time is 120μs. These features, along with the natural multiplexing capability of kinetic inductance detectors, meet the requirements of future large-scale experiments.
Journal Article
Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches
2018
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by \\[\\alpha \\] particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn\\[^{82}\\]Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the \\[\\alpha \\] background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters.
Journal Article
A Proposal for Relative In-flight Flux Self-calibrations for Spectro-photometric Surveys
2021
We present a method for the in-flight relative flux self-calibration of a spectro-photometer instrument, general enough to be applied to any upcoming galaxy survey on satellite. The instrument response function, that accounts for a smooth continuous variation due to telescope optics, on top of a discontinuous effect due to the segmentation of the detector, is inferred with a χ 2 statistics. The method provides unbiased inference of the sources count rates and of the reconstructed relative response function, in the limit of high count rates. We simulate a simplified sequence of observations following a spatial random pattern and realistic distributions of sources and count rates, with the purpose of quantifying the relative importance of the number of sources and exposures for correctly reconstructing the instrument response. We present a validation of the method, with the definition of figures of merit to quantify the expected performance, in plausible scenarios.
Journal Article
Double-beta decay investigation with highly pure enriched Formula: see textSe for the LUCIFER experiment
2015
The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of [Formula: see text]Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched [Formula: see text]Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched [Formula: see text]Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of [Formula: see text]Th, [Formula: see text]U and [Formula: see text]U are respectively: [Formula: see text]61, [Formula: see text]110 and [Formula: see text]74 [Formula: see text]Bq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the [Formula: see text]Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of [Formula: see text]Se to 0[Formula: see text], 2[Formula: see text] and 2[Formula: see text] excited states of [Formula: see text]Kr of 3.4[Formula: see text]10[Formula: see text], 1.3[Formula: see text]10[Formula: see text] and 1.0[Formula: see text]10[Formula: see text] y, respectively, with a 90 % C.L.
Journal Article
Background identification in cryogenic calorimeters through α-α delayed coincidences
2021
Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of α-α delayed coincidences in 232Th and 238U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the α decay position.
Journal Article
Phonon and light read out of a \\\\hbox {Li}_{2}\\hbox {MoO}_{4}\\ crystal with multiplexed kinetic inductance detectors
2019
Molybdenum based crystals such as \\[\\hbox {Li}_{2}\\hbox {MoO}_{4}\\] and CaMoO\\[_4\\] are emerging as leading candidates for next generation experiments searching for neutrino-less double beta decay with cryogenic calorimeters (CUPID, AMoRE). The exquisite energy resolution and high radio-purity of these crystals come at the cost of a potentially detrimental background source: the two neutrinos double beta decay of \\[^{100}\\]Mo. Indeed, the fast half-life of this decay mode, combined with the slow response of cryogenic calorimeters, would result in pile-up events in the energy region of interest for neutrino-less double beta decay, reducing the experimental sensitivity. This background can be suppressed using fast and high sensitivity cryogenic light detectors, provided that the scintillation time constant itself does not limit the time resolution. We developed a new detection technique exploiting the high sensitivity, the fast time response and the multiplexing capability of Kinetic Inductance Detectors. We applied the proposed technique to a \\[2\\times 2\\times 2\\] cm\\[^3\\]\\[\\hbox {Li}_{2}\\hbox {MoO}_{4}\\] crystal, which was chosen as baseline option for CUPID. We measured simultaneously both the phonon and scintillation signals with KIDs. We derived the scintillation time constant of this compound at millikelvin temperatures obtaining \\[\\tau _{scint} = 84.5\\pm 4.5\\mathrm {(syst)}\\pm 1.0\\mathrm {(stat)}\\] \\[\\mu \\]s, constant between 10 and 190 mK.
Journal Article
BULLKID: BULky and Low-Threshold Kinetic Inductance Detectors
by
Pettinacci, V.
,
Le Sueur, H.
,
Romagnoni, M.
in
Characterization and Evaluation of Materials
,
Coherent scattering
,
Collaboration
2020
BULLKID is an R&D project on a cryogenic particle detector to search for rare low-energy processes such as low-mass dark matter and neutrino coherent scattering off nuclei. The detector unit we are designing consists in an array of ~ 100 silicon absorbers sensed by phonon-mediated, microwave-multiplexed kinetic inductance detectors, with energy threshold below 100 eV and total target mass around 30 g. The single detector unit will be engineered to ensure a straightforward scalability to a future kg-scale experiment.
Journal Article
Performances of a large mass ZnMoO4 scintillating bolometer for a next generation 0νDBD experiment
2012
We present the performances of a 330 g zinc molybdate (ZnMoO
4
) crystal working as scintillating bolometer as a possible candidate for a next generation experiment to search for neutrinoless double beta decay of
100
Mo. The energy resolution, evaluated at the 2615 keV
γ
-line of
208
Tl, is 6.3 keV FWHM. The internal radioactive contaminations of the ZnMoO
4
were evaluated as <6 μBq/kg (
228
Th) and 27±6 μBq/kg (
226
Ra). We also present the results of the
α
vs
β
/
γ
discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone.
Journal Article
Development of Thermal Kinetic Inductance Detectors Suitable for X-ray Spectroscopy
by
Faverzani, M.
,
Di Domizio, S.
,
D’Addabbo, A.
in
Arrays
,
Characterization and Evaluation of Materials
,
CHARGE-COUPLED DEVICES
2018
We report on the development of thermal kinetic inductance detectors (TKIDs) suitable to perform X-ray spectroscopy measurements. The aim is to implement MKIDs sensors working in thermal quasi-equilibrium mode to detect X-ray photons as pure calorimeters. The thermal mode is a variation on the MKID classical way of operation that has generated interest in recent years. TKIDs can offer the MKIDs inherent multiplexibility in the frequency domain, a high spatial resolution comparable with CCDs, and an energy resolution theoretically limited only by thermodynamic fluctuations across the thermal weak links. Microresonators are built in Ti/TiN multilayer technology with the inductive part thermally coupled with a metal absorber on a suspended SiN membrane, to avoid escape of phonons from the film to the substrate. The mid-term goal is to optimize the single-pixel design in terms of superconducting critical temperatures, internal quality factors, kinetic inductance and spectral energy resolution. The final goal is to realize a demonstrator array for a next generation thousand pixels X-ray spectrometer. In this contribution, the status of the project after one year of developments is reported, with detailed reference to the microresonators design and simulations and to the fabrication process.
Journal Article
The CUORE Pulse Tube Noise Cancellation Technique
by
Canonica, L.
,
Schmidt, B.
,
Dompè, V.
in
Bolometers
,
Characterization and Evaluation of Materials
,
Condensed Matter Physics
2020
The 1-ton-scale CUORE detector is made of 988
TeO
2
crystals operated as cryogenic bolometers at a working temperature of
∼
10
mK
. In order to provide the necessary cooling power at 4 K stage, a total of five pulse tube (PT) refrigerators are used. The PTs make the cryogenic system reliable and stable, but have the downside that mechanical vibrations at low frequencies (1.4 Hz and related harmonics) are injected into the experimental apparatus. An active noise cancellation technique has been developed in order to reduce such effect by taking advantage from the coherent interference of the pressure oscillations originated by the different PTs. The technique that will be presented consists in controlling the relative phases of the pressure waves running inside the CUORE PT lines, in order to achieve the lowest detector noise. By reducing the power of PT harmonics by a factor up to
10
4
, it drastically suppresses the overall noise RMS on the CUORE detector. In the following, we demonstrate the reliability and effectiveness of the technique, showing that the optimization of the detector noise level is possible in different experimental conditions.
Journal Article