Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Dialynas, F"
Sort by:
Energy efficiency in public buildings
A first step towards sustainable development and environmental protection is the carbon footprint estimation of buildings and the evaluation of their potential to decrease energy consumption. In this project, the first step for decreasing energy consumption in public buildings is described: the energy audits with in-situ measurements of 50 public buildings. The required equipment, the procedure, the difficulties during the audits and the main results of such a large number of public buildings are presented for the first time. Three of these buildings with strong social interest are upgraded in terms of energy consumption class, leading up to 90% savings of consumed energy.
Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe
A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.
Synergies between interstellar dust and heliospheric science with an interstellar probe
We discuss the synergies between heliospheric and dust science, the open science questions, the technological endeavours, and programmatic aspects that are important to maintain or develop in the decade to come. In particular, we illustrate how we can use interstellar dust in the solar system as a tracer for the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but potentially important science question of the role of cosmic dust in heliospheric and astrospheric physics. We show that an interstellar probe mission with a dedicated dust suite would bring unprecedented advances to interstellar dust research, and can also contribute – through measuring dust – to heliospheric science. This can, in particular, be done well if we work in synergy with other missions inside the solar system, thereby using multiple vantage points in space to measure the dust as it ‘rolls’ into the heliosphere. Such synergies between missions inside the solar system and far out are crucial for disentangling the spatially and temporally varying dust flow. Finally, we highlight the relevant instrumentation and its suitability for contributing to finding answers to the research questions.
Saturn's periodic magnetic field perturbations caused by a rotating partial ring current
We demonstrate that the periodic magnetic field perturbations as observed from Cassini are caused by the plasma pressure of the energetic (>2 keV) particle distributions that are periodically injected and subsequently drift around Saturn. Plasma pressures inferred from the Cassini Plasma Spectrometer (CAPS) (<2 keV) and the Magnetospheric Imaging Instrument (MIMI) (>2 keV) are used to compute the three‐dimensional pressure‐driven currents and their associated magnetic field perturbations. The distribution of the “hot” (>2 keV) plasma pressure is derived from Energetic Neutral Atom (ENA) images obtained by the Ion Neutral Camera (INCA) and in‐situ spectral measurements. The radial profile of “cold” (<2 keV) plasma pressure is obtained from statistical studies and is assumed to be azimuthally symmetric.
Interstellar Neutral Hydrogen in the Heliosphere: New Horizons Observations in the Context of Models
Interstellar neutral (ISN) hydrogen is the most abundant species in the outer heliosheath and the very local interstellar medium (VLISM). Charge exchange collisions in the outer heliosheath result in filtration, reducing the ISN hydrogen density inside the heliosphere. Additionally, these atoms are intensively ionized close to the Sun, resulting in a substantial reduction of their density within a few au from the Sun. The products of this ionization - pickup ions (PUIs) - are detected by charged particle detectors. The Solar Wind Around Pluto (SWAP) instrument on New Horizons provides, for the first time, PUI observations from the distant heliosphere. We analyze the observations collected between 22 and 52 au from the Sun to find the ISN hydrogen density profile and compare the results with predictions from global heliosphere models. We conclude that the density profile derived from the observations is inconsistent with steady-state model predictions. This discrepancy is not explained by time variations close to the Sun and thus may be related to the temporal evolution of the outer boundaries or VLISM conditions. Furthermore, we show that the cold and hot models of ISN hydrogen distribution are not a good approximation closer to the termination shock. Therefore, we recommend a new fiduciary point based on the available New Horizons observations at 40 au from the Sun, at ecliptic direction (285.62{\\deg}, 1.94{\\deg}), where the ISN hydrogen density is 0.11 cm\\(^{-3}\\). The continued operation of New Horizons should give better insight into the source of the discussed discrepancy.
Synergies between interstellar dust and heliospheric science with an Interstellar Probe
We discuss the synergies between heliospheric and dust science, the open science questions, the technological endeavors and programmatic aspects that are important to maintain or develop in the decade to come. In particular, we illustrate how we can use interstellar dust in the solar system as a tracer for the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but potentially important science question of the role of cosmic dust in heliospheric and astrospheric physics. We show that an Interstellar Probe mission with a dedicated dust suite would bring unprecedented advances to interstellar dust research, and can also contribute-through measuring dust - to heliospheric science. This can, in particular, be done well if we work in synergy with other missions inside the solar system, thereby using multiple vantage points in space to measure the dust as it `rolls' into the heliosphere. Such synergies between missions inside the solar system and far out are crucial for disentangling the spatially and temporally varying dust flow. Finally, we highlight the relevant instrumentation and its suitability for contributing to finding answers to the research questions.
The development of a split-tail heliosphere and the role of non-ideal processes: a comparison of the BU and Moscow models
Global models of the heliosphere are critical tools used in the interpretation of heliospheric observations. There are several three-dimensional magnetohydrodynamic (MHD) heliospheric models that rely on different strategies and assumptions. Until now only one paper has compared global heliosphere models, but without magnetic field effects. We compare the results of two different MHD models, the BU and Moscow models. Both models use identical boundary conditions to compare how different numerical approaches and physical assumptions contribute to the heliospheric solution. Based on the different numerical treatments of discontinuities, the BU model allows for the presence of magnetic reconnection, while the Moscow model does not. Both models predict collimation of the solar outflow in the heliosheath by the solar magnetic field and produce a split-tail where the solar magnetic field confines the charged solar particles into distinct north and south columns that become lobes. In the BU model, the ISM flows between the two lobes at large distances due to MHD instabilities and reconnection. Reconnection in the BU model at the port flank affects the draping of the interstellar magnetic field in the immediate vicinity of the heliopause. Different draping in the models cause different ISM pressures, yielding different heliosheath thicknesses and boundary locations, with the largest effects at high latitudes. The BU model heliosheath is 15% thinner and the heliopause is 7% more inwards at the north pole relative to the Moscow model. These differences in the two plasma solutions may manifest themselves in energetic neutral atom measurements of the heliosphere.