Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Diebold, Sandra S."
Sort by:
Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis
Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor. The relationship between wound healing and cancer is intricate and complex. Here, the authors show that in breast cancer models an IL-6 driven co-expression of FAP and HO-1 in tumour-associated macrophages, similar to the wound healing response, facilitates migration and metastatic spread.
Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA
Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-α in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.
Antibody conjugates for targeted delivery of Toll-like receptor 9 agonist to the tumor tissue
Imiquimod, a Toll-like receptor 7 (TLR7) agonist is routinely used for topical administration in basal cell carcinoma and stage zero melanoma. Similarly, the TLR agonist Bacillus Calmette-Guérin is used for the local treatment of bladder cancer and clinical trials showed treatment efficacy of intratumoral injections with TLR9 agonists. However, when administered systemically, endosomal TLR agonists cause adverse responses due to broad immune activation. Hence, strategies for targeted delivery of TLR agonists to the tumor tissue are needed to enable the widespread use of endosomal TLR agonists in the context of tumor immunotherapy. One strategy for targeted delivery of TLR agonist is their conjugation to tumor antigen-specific therapeutic antibodies. Such antibody-TLR agonist conjugates act synergistically by inducing local TLR-mediated innate immune activation which complements the anti-tumor immune mechanisms induced by the therapeutic antibody. In this study, we explored different conjugation strategies for TLR9 agonists to immunoglobulin G (IgG). We evaluated biochemical conjugation of immunostimulatory CpG oligodesoxyribonucleotides (ODN) to the HER2-specific therapeutic antibody Trastuzumab with different cross-linkers comparing stochastic with site-specific conjugation. The physiochemical make-up and biological activities of the generated Trastuzumab-ODN conjugates were characterized in vitro and demonstrated that site-specific conjugation of CpG ODN is crucial for maintaining the antigen-binding capabilities of Trastuzumab. Furthermore, site-specific conjugate was effective in promoting anti-tumor immune responses in vivo in a pseudo-metastasis mouse model with engineered human HER2-transgenic tumor cells. In this in vivo model, co-delivery of Trastuzumab and CpG ODN in form of site-specific conjugates was superior to co-injection of unconjugated Trastuzumab, CpG ODN or stochastic conjugate in promoting T cell activation and expansion. Thereby, this study highlights that site-specific conjugation of CpG ODN to therapeutic antibodies targeting tumor markers is a feasible and more reliable approach for generation of conjugates which retain and combine the functional properties of the adjuvant and the antibody.
Plant Virus Particles Carrying Tumour Antigen Activate TLR7 and Induce High Levels of Protective Antibody
Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the \"gold standard\" Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-α by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe \"in-built\" ssRNA adjuvant.
Nucleic acids and endosomal pattern recognition: how to tell friend from foe?
The innate immune system has evolved endosomal and cytoplasmic receptors for the detection of viral nucleic acids as sensors for virus infection. Some of these pattern recognition receptors (PRR) detect features of viral nucleic acids that are not found in the host such as long stretches of double-stranded RNA (dsRNA) and uncapped single-stranded RNA (ssRNA) in case of Toll-like receptor (TLR) 3 and RIG-I, respectively. In contrast, TLR7/8 and TLR9 are unable to distinguish between viral and self-nucleic acids on the grounds of distinct molecular patterns. The ability of these endosomal TLR to act as PRR for viral nucleic acids seems to rely solely on the mode of access to the endolysosomal compartment in which recognition takes place. The current dogma states that self-nucleic acids do not enter the TLR-sensing compartment under normal physiological conditions. However, it is still poorly understood how dendritic cells (DC) evade activation by self-nucleic acids, in particular with regard to specific DC subsets, which are specialized in taking up material from dying cells for cross-presentation of cell-associated antigens. In this review we discuss the current understanding of how the immune system distinguishes between foreign and self-nucleic acids and point out some of the key aspects that still require further research and clarification.
Antibody-Antigen-Adjuvant Conjugates Enable Co-Delivery of Antigen and Adjuvant to Dendritic Cells in Cis but Only Have Partial Targeting Specificity
Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC) that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA) and CpG oligodeoxynucleotides (ODN). We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL) responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses.
Toll-like receptor 3 promotes cross-priming to virus-infected cells
Cross-presentation of cell-associated antigens plays an important role in regulating CD8 + T cell responses to proteins that are not expressed by antigen-presenting cells (APCs) 1 . Dendritic cells are the principal cross-presenting APCs in vivo and much progress has been made in elucidating the pathways that allow dendritic cells to capture and process cellular material 1 . However, little is known about the signals that determine whether such presentation ultimately results in a cytotoxic T cell (CTL) response (cross-priming) or in CD8 + T cell inactivation (cross-tolerance). Here we describe a mechanism that promotes cross-priming during viral infections. We show that murine CD8α + dendritic cells are activated by double-stranded (ds)RNA present in virally infected cells but absent from uninfected cells. Dendritic cell activation requires phagocytosis of infected material, followed by signalling through the dsRNA receptor, toll-like receptor 3 (TLR3). Immunization with virus-infected cells or cells containing synthetic dsRNA leads to a striking increase in CTL cross-priming against cell-associated antigens, which is largely dependent on TLR3 expression by antigen-presenting cells. Thus, TLR3 may have evolved to permit cross-priming of CTLs against viruses that do not directly infect dendritic cells.
Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptor-mediated dendritic cell activation in ovarian carcinoma
Dendritic cells (DC) have the potential to instigate a tumour-specific immune response, but their ability to prime naïve lymphocytes depends on their activation status. Thus, for tumour immunotherapy to be effective, the provision of appropriate DC activation stimuli such as Toll-like receptor (TLR) agonists is crucial in order to overcome immunosuppression associated with the tumour microenvironment. To address this, we investigated how ovarian carcinoma (OC)-associated ascites impedes activation of DC by TLR agonists. Our results show that ascites reduces the TLR-mediated up-regulation of CD86 and partially inhibits the production of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-12 and tumour necrosis factor α (TNFα) in monocyte-derived DC from healthy controls. We further observe an impaired T cell stimulatory capacity of DC upon activation with TLR agonists in the presence of ascites, indicating that their functionality is affected by the immunosuppressive factors. We identify IL-10 and prostaglandin E2 (PGE2) as the pivotal immunosuppressive components in OC-associated ascites compromising TLR-mediated DC activation. Interestingly, IL-10 is present in both ascites from patients with malignant OC and in peritoneal fluid from patients with benign ovarian conditions and both fluids have similar ability to reduce TLR-mediated DC activation. However, depletion of IL-10 from ascites revealed that the presence of paracrine IL-10 is not crucial for ascites-mediated suppression of DC activation in response to TLR activation. Unlike IL-10, PGE2 is absent from peritoneal fluid of patients with benign conditions and selectively reduces TNFα induction in response to TLR-mediated activation in the presence of OC-associated ascites. Our study highlights PGE2 as an immunosuppressive component of the malignant OC microenvironment rendering PGE2 a potentially important target for immunotherapy in OC.
Monitoring of In Vivo Function of Superparamagnetic Iron Oxide Labelled Murine Dendritic Cells during Anti-Tumour Vaccination
Dendritic cells (DCs) generated in vitro to present tumour antigens have been injected in cancer patients to boost in vivo anti-tumour immune responses. This approach to cancer immunotherapy has had limited success. For anti-tumour therapy, delivery and subsequent migration of DCs to lymph nodes leading to effective stimulation of effector T cells is thought to be essential. The ability to non-invasively monitor the fate of adoptively transferred DCs in vivo using magnetic resonance imaging (MRI) is an important clinical tool to correlate their in vivo behavior with response to treatment. Previous reports of superparamagnetic iron oxides (SPIOs) labelling of different cell types, including DCs, have indicated varying detrimental effects on cell viability, migration, differentiation and immune function. Here we describe an optimised labelling procedure using a short incubation time and low concentration of clinically used SPIO Endorem to successfully track murine DC migration in vivo using MRI in a mouse tumour model. First, intracellular labelling of bone marrow derived DCs was monitored in vitro using electron microscopy and MRI relaxometry. Second, the in vitro characterisation of SPIO labelled DCs demonstrated that viability, phenotype and functions were comparable to unlabelled DCs. Third, ex vivo SPIO labelled DCs, when injected subcutaneously, allowed for the longitudinal monitoring by MR imaging of their migration in vivo. Fourth, the SPIO DCs induced the proliferation of adoptively transferred CD4(+) T cells but, most importantly, they primed cytotoxic CD8(+) T cell responses to protect against a B16-Ova tumour challenge. Finally, using anatomical information from the MR images, the immigration of DCs was confirmed by the increase in lymph node size post-DC injection. These results demonstrate that the SPIO labelling protocol developed in this study is not detrimental for DC function in vitro and in vivo has potential clinical application in monitoring therapeutic DCs in patients with cancer.
Determination of T‐cell fate by dendritic cells
Dendritic cells (DC) are professional antigen‐presenting cells with a unique T‐cell stimulatory aptitude that play a crucial role in the instruction of adaptive immune responses upon infection. By controlling the initiation of a diverse set of effector functions, which are suitable for the elimination of a wide range of pathogens, DCs form the pivotal link between the innate and the adaptive immune system. The innate pattern recognition pathways that trigger DC activation are central for skewing of the adaptive immune responses that are subsequently induced. Thus innate activation not only precedes adaptive immune activation, it also controls it and tailors the effector functions to the requirements of the infection. The adaptive immune response has to match the nature of the infection, but this does not only concern the type of pathogen, it is also affected by the localization of the infection. Tissue homeostasis has to be ensured and thus tissue‐derived environmental factors influence the functional activity of activated DCs and thereby contribute to shaping of the immune response. Adaptive immune responses are vital for the elimination of pathogens, have the potential to attack tumor cells and play a detrimental role during transplant rejection and in a variety of autoimmune diseases. Better understanding of the mechanisms that control the induction of different T‐cell effector functions will enable the development of strategies to manipulate the immune system in the context of vaccination, tumor immunotherapy, transplantation and autoimmunity.