Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
52
result(s) for
"Diecke, Sebastian"
Sort by:
Reassessment of marker genes in human induced pluripotent stem cells for enhanced quality control
2024
Human induced pluripotent stem cells (iPSCs) have great potential in research, but pluripotency testing faces challenges due to non-standardized methods and ambiguous markers. Here, we use long-read nanopore transcriptome sequencing to discover 172 genes linked to cell states not covered by current guidelines. We validate 12 genes by qPCR as unique markers for specific cell fates: pluripotency (
CNMD
,
NANOG
,
SPP1
), endoderm (
CER1
,
EOMES
,
GATA6
), mesoderm (
APLNR
,
HAND1
,
HOXB7
), and ectoderm (
HES5
,
PAMR1
,
PAX6
). Using these genes, we develop a machine learning-based scoring system, “hiPSCore”, trained on 15 iPSC lines and validated on 10 more. hiPSCore accurately classifies pluripotent and differentiated cells and predicts their potential to become specialized 2D cells and 3D organoids. Our re-evaluation of cell fate marker genes identifies key targets for future studies on cell fate assessment. hiPSCore improves iPSC testing by reducing time, subjectivity, and resource use, thus enhancing iPSC quality for scientific and medical applications.
Quality control, including pluripotency testing of human iPSCs lacks standardization. Here, authors identify and validate gene markers to develop the machine learning-based hiPSCore to streamline pluripotency testing and elevate iPSC quality.
Journal Article
Chemically defined generation of human cardiomyocytes
2014
A simple, robust, chemically defined method for generating cardiomyocytes from human pluripotent stem cells is described. It should enable the identification of conditions for maturation of these cells.
Existing methods for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed an optimized cardiac differentiation strategy, using a chemically defined medium consisting of just three components: the basal medium RPMI 1640,
L
-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. Along with small molecule–based induction of differentiation, this protocol produced contractile sheets of up to 95% TNNT2
+
cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell and was effective in 11 hiPSC lines tested. This chemically defined platform for cardiac specification of hiPSCs will allow the elucidation of cardiomyocyte macromolecular and metabolic requirements and will provide a minimal system for the study of maturation and subtype specification.
Journal Article
Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy
2019
Lamin A/C (
LMNA
) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in
LMNA
is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-β (PDGFRB) as a potential therapeutic target.
A disease model using cardiomyocytes derived from induced pluripotent stem cells of patients with mutated LMNA-related dilated cardiomyopathy reveals that the abnormal activation of the PDGF pathway is associated with the arrhythmic phenotypes of patients.
Journal Article
iPSC-derived reactive astrocytes from patients with multiple sclerosis protect cocultured neurons in inflammatory conditions
by
Muinjonov, Bakhrom
,
Chien, Claudia
,
Zocholl, Dario
in
Astrocytes
,
Astrocytes - metabolism
,
Biomedical research
2023
Multiple sclerosis (MS) is the most common chronic central nervous system inflammatory disease. Individual courses are highly variable, with complete remission in some patients and relentless progression in others. We generated induced pluripotent stem cells (iPSCs) to investigate possible mechanisms in benign MS (BMS), compared with progressive MS (PMS). We differentiated neurons and astrocytes that were then stressed with inflammatory cytokines typically associated with MS phenotypes. TNF-α/IL-17A treatment increased neurite damage in MS neurons from both clinical phenotypes. In contrast, TNF-α/IL-17A-reactive BMS astrocytes cultured with healthy control neurons exhibited less axonal damage compared with PMS astrocytes. Accordingly, single-cell transcriptomic BMS astrocyte analysis of cocultured neurons revealed upregulated neuronal resilience pathways; these astrocytes showed differential growth factor expression. Furthermore, supernatants from BMS astrocyte/neuronal cocultures rescued TNF-α/IL-17-induced neurite damage. This process was associated with a unique LIF and TGF-β1 growth factor expression, as induced by TNF-α/IL-17 and JAK-STAT activation. Our findings highlight a potential therapeutic role of modulation of astrocyte phenotypes, generating a neuroprotective milieu. Such effects could prevent permanent neuronal damage.
Journal Article
E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming
by
Besser, Daniel
,
Diecke, Sebastian
,
Grigoryan, Tamara
in
Adhesion
,
Animals
,
Cadherins - genetics
2011
We report new functions of the cell‐adhesion molecule E‐cadherin in murine pluripotent cells. E‐cadherin is highly expressed in mouse embryonic stem cells, and interference with E‐cadherin causes differentiation. During cellular reprogramming of mouse fibroblasts by OCT4, SOX2, KLF4 and c‐MYC, fully reprogrammed cells were exclusively observed in the E‐cadherin‐positive cell population and could not be obtained in the absence of E‐cadherin. Moreover, reprogrammed cells could be established by viral E‐cadherin in the absence of exogenous OCT4. Thus, reprogramming requires spatial cues that cross‐talk with essential transcription factors. The cell‐adhesion molecule E‐cadherin has important functions in pluripotency and reprogramming.
E‐cadherin is required for reprogramming of mouse fibroblasts to iPS cells by Oct4, Sox2, Klf4 and c‐Myc and can also replace Oct4 in this process. This suggests that spatial cues are crucial for reprogramming.
Journal Article
Embryos and embryonic stem cells from the white rhinoceros
2018
The northern white rhinoceros (NWR,
Ceratotherium simum cottoni
) is the most endangered mammal in the world with only two females surviving. Here we adapt existing assisted reproduction techniques (ART) to fertilize Southern White Rhinoceros (SWR) oocytes with NWR spermatozoa. We show that rhinoceros oocytes can be repeatedly recovered from live SWR females by transrectal ovum pick-up, matured, fertilized by intracytoplasmic sperm injection and developed to the blastocyst stage in vitro. Next, we generate hybrid rhinoceros embryos in vitro using gametes of NWR and SWR. We also establish embryonic stem cell lines from the SWR blastocysts. Blastocysts are cryopreserved for later embryo transfer. Our results indicate that ART could be a viable strategy to rescue genes from the iconic, almost extinct, northern white rhinoceros and may also have broader impact if applied with similar success to other endangered large mammalian species.
The Southern (SWR) and Northern (NWR) are two subspecies of the White Rhinoceros with the NWR being almost extinct. Here, using assisted reproduction technology, the authors produce and cryopreserve SWR purebred and NWR-SWR hybrid embryos developed to the blastocyst stage, and also generate embryonic stem cell lines, in an attempt to save genes of the NWR.
Journal Article
Naïve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction
2022
The northern white rhinoceros (NWR) is probably the earth’s most endangered mammal. To rescue the functionally extinct species, we aim to employ induced pluripotent stem cells (iPSCs) to generate gametes and subsequently embryos in vitro. To elucidate the regulation of pluripotency and differentiation of NWR PSCs, we generated iPSCs from a deceased NWR female using episomal reprogramming, and observed surprising similarities to human PSCs. NWR iPSCs exhibit a broad differentiation potency into the three germ layers and trophoblast, and acquire a naïve-like state of pluripotency, which is pivotal to differentiate PSCs into primordial germ cells (PGCs). Naïve culturing conditions induced a similar expression profile of pluripotency related genes in NWR iPSCs and human ESCs. Furthermore, naïve-like NWR iPSCs displayed increased expression of naïve and PGC marker genes, and a higher integration propensity into developing mouse embryos. As the conversion process was aided by ectopic
BCL2
expression, and we observed integration of reprogramming factors, the NWR iPSCs presented here are unsuitable for gamete production. However, the gained insights into the developmental potential of both primed and naïve-like NWR iPSCs are fundamental for in future PGC-specification in order to rescue the species from extinction using cryopreserved somatic cells.
Journal Article
The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage
by
Mansour, Fatma
,
Mosimann, Christian
,
Kresoja, Jelena
in
Cardiomyocytes
,
Cell Biology
,
Cell culture
2022
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83 -deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes ( PAX8 , EYA1 , HOXB7 ), and an aberrant induction of LPM markers (e.g. FOXF1 , FOXF2 , FENDRR , HAND1 , HAND2 ). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83 -deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Journal Article
Efficient generation of a self-organizing neuromuscular junction model from human pluripotent stem cells
by
Nguyen, Lan Vi N.
,
García-Pérez, Angélica
,
Phan, Han C.
in
13/100
,
631/378/1689/364
,
631/378/2632/1694
2023
The complex neuromuscular network that controls body movements is the target of severe diseases that result in paralysis and death. Here, we report the development of a robust and efficient self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells that can be maintained long-term in simple adherent conditions. The timely application of specific patterning signals instructs the simultaneous development and differentiation of position-specific brachial spinal neurons, skeletal muscles, and terminal Schwann cells. High-content imaging reveals self-organized bundles of aligned muscle fibers surrounded by innervating motor neurons that form functional neuromuscular junctions. Optogenetic activation and pharmacological interventions show that the spinal neurons actively instruct the synchronous skeletal muscle contraction. The generation of a soNMJ model from spinal muscular atrophy patient-specific iPSCs reveals that the number of NMJs and muscle contraction is severely affected, resembling the patient’s pathology. In the future, the soNMJ model could be used for high-throughput studies in disease modeling and drug development. Thus, this model will allow us to address unmet needs in the neuromuscular disease field.
Here, Urzi et al. pioneered a 2D self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells, with implications for neuromuscular disease modeling and drug screening approaches.
Journal Article
Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure
2024
Expansion of the glutamine tract (poly-Q) in the protein huntingtin (HTT) causes the neurodegenerative disorder Huntington’s disease (HD). Emerging evidence suggests that mutant HTT (mHTT) disrupts brain development. To gain mechanistic insights into the neurodevelopmental impact of human mHTT, we engineered male induced pluripotent stem cells to introduce a biallelic or monoallelic mutant 70Q expansion or to remove the poly-Q tract of HTT. The introduction of a 70Q mutation caused aberrant development of cerebral organoids with loss of neural progenitor organization. The early neurodevelopmental signature of mHTT highlighted the dysregulation of the protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a transcription factor involved in mitochondrial integrated stress response. CHCHD2 repression was associated with abnormal mitochondrial morpho-dynamics that was reverted upon overexpression of CHCHD2. Removing the poly-Q tract from HTT normalized CHCHD2 levels and corrected key mitochondrial defects. Hence, mHTT-mediated disruption of human neurodevelopment is paralleled by aberrant neurometabolic programming mediated by dysregulation of CHCHD2, which could then serve as an early interventional target for HD.
Using brain organoids models, Prigione and colleagues uncovered the impact of Huntington’s disease on human brain developmental and identified early dysregulation of CHCHD2, which disrupted mitochondria and might serve as a therapeutic target.
Journal Article