Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Dimaglie, Matteo"
Sort by:
Vineyard establishment under exacerbated summer stress: effects of mycorrhization on rootstock agronomical parameters, leaf element composition and root-associated bacterial microbiota
AimsClimate change imposes adaptation of viticulture in risk areas, such as the Mediterranean. Mycorrhization is a valid tool to reduce the impact of the expected temperature/drought increase. Aim of this work was to test the effects of mycorrhization on grapevine vegetative growth, element composition of soil/leaves, and microbiota of bulk soil/rhizosphere/endorhiza, in the field, under exacerbated summer stress conditions obtained by planting the rootstocks in June.Methods118 rooted cuttings of 1103-Paulsen (Vitis berlandieri × Vitis rupestris) were planted in Salento (Apulia, Southern Italy); about half of them were mycorrhized. Leaf Area Index, shoot growth and survival rate were monitored across two growing seasons. Leaf/shoot weight, chemical analysis of 25 elements, and 16S rRNA gene metabarcoding of bulk soil/rhizosphere/endorhiza were performed on subsamples.ResultsMycorrhized plants showed significantly higher survival rate and growth, and accumulated significantly higher amounts of 18 elements. 27 endorhizal OTUs (representing ~20% of total sequences) were differently distributed (20 OTUs more abundant in mycorrhized plants); in the rhizosphere, instead, 12 OTUs (~2.5% of total sequences) were differently distributed. A few Actinobacterial OTUs were enriched by mycorrhization in the root endosphere; the same OTUs were the most correlated with the chemical elements, suggesting a role in element dynamics. These OTUs were not hub taxa of the co-occurrence network.ConclusionsThis work shed light onto the interactions between mycorrhiza and microbiome, in the context of plant element dynamics, which is useful to identify potential target candidates for biotechnological applications, thus moving towards a more sustainable, ecosystem-based viticulture.
Antimicrobial Activity and Activation of Defense Genes in Plants by Natural Extracts: Toward Sustainable Plant Health Management
The increasing demand for sustainable agriculture has accelerated research into eco-friendly plant health management, particularly through natural substances rich in bioactive compounds. In this study, various substances, including essential oils, extracts from Aloe vera, artichoke and ornamental plants, by-products from beer and coffee processing, and selected commercial formulations including biostimulants and a plant strengthener, were evaluated for their antimicrobial properties and ability to trigger plant defenses. Notably, Agapanthus spp. exhibited strong antifungal activity against the fungus Botrytis cinerea (Bc), while thyme, tea tree, and lavender essential oils were effective against both Bc and the bacterium Pseudomonas syringae pv. tomato (Pst). Greenhouse trials on tomato plants demonstrated the protective effects of A. vera gel and ornamental plant extracts against Bc and Potato virus Y (PVY), while coffee and artichoke extracts were effective against Pst. An alginate-based formulation containing thyme oil showed enhanced in planta efficacy against the three pathogens. Gene expression analyses revealed early upregulation of PR-1 and PR-4, especially with alginate treatments and A. vera gel at 12 h post-treatment (hpt) while coffee extract triggered the strongest late response at 72 hpt. These findings highlight the potential of plant-derived substances in promoting sustainable plant disease management through both direct antimicrobial action and immune system activation.
Which American Wild Species Could Be Used in Grapevine Breeding Programs? A Review
Plant domestication has led to a series of morphological and physiological changes aimed at making species more suitable for human use and consumption. In Vitis vinifera ssp. sativa, these changes include increased sugar content and berry size, modifications in seed morphology, and the transition from dioecy to hermaphroditism. This process, which began approximately 6000–8000 years ago in the Transcaucasian region, unfolded in multiple stages and involved the natural abandonment of wild Vitis populations. While it contributed to the phenotypic diversification of modern grapevine cultivars, it also came at the expense of biodiversity. Selection for yield and quality has resulted in the loss of resilience traits in cultivated grapevines. In this study, 23 Vitis species of American origin were examined, analyzing for each their native range, susceptibility to biotic and abiotic stresses, and their suitability for propagation. The study, characterization, and compilation of these American Vitis species provide a valuable resource for consultation and use in targeted grapevine breeding programs. These efforts aim to recover adaptive traits from wild progenitors, enhance the resilience of cultivated grapevines, and address the challenges posed by modern agriculture and sustainability.