Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Distel, Daniel L"
Sort by:
Greater than pH 8: The pH dependence of EDTA as a preservative of high molecular weight DNA in biological samples
Ethylenediaminetetraacetic acid (EDTA) is a divalent cation chelator and chemical preservative that has been shown to be the active ingredient of the popular DNA preservative DESS. EDTA may act to reduce DNA degradation during tissue storage by sequestering divalent cations that are required by nucleases naturally occurring in animal tissues. Although EDTA is typically used between pH 7.5 and 8 in preservative preparations, the capacity of EDTA to chelate divalent cations is known to increase with increasing pH. Therefore, increasing the pH of EDTA-containing preservative solutions may improve their effectiveness as DNA preservatives. To test this hypothesis, we stored tissues from five aquatic species in 0.25 M EDTA adjusted to pH 8, 9, and 10 for 12 months at room temperature before DNA isolation. For comparison, tissues from the same specimens were also stored in 95% ethanol. DNA extractions performed on tissues preserved in EDTA pH 9 or 10 resulted in as great or greater percent recovery of high molecular weight DNA than did extractions from tissues stored at pH 8. In all cases examined, percent recovery of high molecular weight DNA from tissues preserved in EDTA pH 10 was significantly better than that observed from tissues preserved in 95% ethanol. Our results support the conclusion that EDTA contributes to DNA preservation in tissues by chelating divalent cations and suggest that preservative performance can be improved by increasing the pH of EDTA-containing DNA preservative solutions.
DESS deconstructed: Is EDTA solely responsible for protection of high molecular weight DNA in this common tissue preservative?
DESS is a formulation widely used to preserve DNA in biological tissue samples. Although it contains three ingredients, dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA) and sodium chloride (NaCl), it is frequently referred to as a DMSO-based preservative. The effectiveness of DESS has been confirmed for a variety of taxa and tissues, however, to our knowledge, the contributions of each component of DESS to DNA preservation have not been evaluated. To address this question, we stored tissues of three aquatic taxa, Mytilus edulis (blue mussel), Faxonius virilis (virile crayfish) and Alitta virens (clam worm) in DESS, each component of DESS individually and solutions containing all combinations of two components of DESS. After storage at room temperature for intervals ranging from one day to six months, we extracted DNA from each tissue and measured the percentage of high molecular weight (HMW) DNA recovered (%R) and normalized HMW DNA yield (nY). Here, HMW DNA is defined as fragments >10 kb. For comparison, we also measured the %R and nY of HMW DNA from extracts of fresh tissues and those stored in 95% EtOH over the same time intervals. We found that in cases where DESS performed most effectively (yielding [greater than or equal to] 20%R of HMW DNA), all solutions containing EDTA were as or more effective than DESS. Conversely, in cases where DESS performed more poorly, none of the six DESS-variant storage solutions provided better protection of HMW DNA than DESS. Moreover, for all taxa and storage intervals longer than one day, tissues stored in solutions containing DMSO alone, NaCl alone or DMSO and NaCl in combination resulted in %R and nY of HMW DNA significantly lower than those of fresh tissues. These results indicate that for the taxa, solutions and time intervals examined, only EDTA contributed directly to preservation of high molecular weight DNA.
Quantitative Imaging of Nitrogen Fixation by Individual Bacteria Within Animal Cells
Biological nitrogen fixation, the conversion of atmospheric nitrogen to ammonia for biosynthesis, is exclusively performed by a few bacteria and archaea. Despite the essential importance of biological nitrogen fixation, it has been impossible to quantify the incorporation of nitrogen by individual bacteria or to map the fate of fixed nitrogen in host cells. In this study, with multi-isotope imaging mass spectrometry we directly imaged and measured nitrogen fixation by individual bacteria within eukaryotic host cells and demonstrated that fixed nitrogen is used for host metabolism. This approach introduces a powerful way to study microbes and global nutrient cycles.
Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk
Significance In animals, gut microbes are essential for digestion. Here, we show that bacteria outside the gut can also play a critical role in digestion. In shipworms, wood-eating marine bivalves, endosymbiotic bacteria are found within specialized cells in the gills. We show that these endosymbionts produce wood-degrading enzymes that are selectively transported to the shipworm’s bacteria-free gut, where wood digestion occurs. Because only selected wood-degrading enzymes are transported, the shipworm system naturally identifies those endosymbiont enzymes most relevant to lignocellulose deconstruction without interference from other microbial proteins. Thus, this work expands the known biological repertoire of bacterial endosymbionts to include digestion of food and identifies previously undescribed enzymes and enzyme combinations of potential value to biomass-based industries, such as cellulosic biofuel production. Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea , wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.
Shipworm bioerosion of lithic substrates in a freshwater setting, Abatan River, Philippines: Ichnologic, paleoenvironmental and biogeomorphical implications
Teredinid bivalves, commonly referred to as shipworms, are known for their propensity to inhabit, bioerode, and digest woody substrates across a range of brackish and fully marine settings. Shipworm body fossils and/or their borings, which are most allied with the ichnotaxon Teredolites longissimus, are found in wood preserved in sedimentary sequences ranging in age from Early Cretaceous to Recent and traditionally they have been regarded as evidence of marginal marine or marine depositional environments. Recent studies associated with the Philippine Mollusk Symbiont International Collaboration Biodiversity Group (PMS-ICBG) expedition on the island of Bohol, Philippines, have identified a new shipworm taxon (Lithoredo abatanica) that is responsible for macrobioerosion of a moderately indurated Neogene foraminiferal packstone cropping out along a freshwater reach of the Abatan River. In the process of drilling into and ingesting the limestone, these shipworms produce elongate borings that expand in diameter very gradually toward distal termini, exhibit sinuous or highly contorted axes and circular transverse outlines, and are lined along most of their length by a calcite tube. Given their strong resemblance to T. longissimus produced in wood but their unusual occurrence in a lithic substrate, these shipworm borings can be regarded as incipient Gastrochaenolites or, alternatively, as Apectoichnus. The alternate names reflect that the borings provide a testbed for ideas of the appropriateness of substrate as an ichnotaxobasis. The discovery of previously unrecognized shipworm borings in lithic substrates and the co-occurrence of another shipworm (Nausitora) in submerged logs in the same freshwater setting have implications for interpreting depositional conditions based on fossil teredinids or their ichnofossils. Of equal significance, the Abatan River study demonstrates that macrobioerosion in freshwater systems may be just as important as it is in marine systems with regard to habitat creation and landscape development. L. abatanica serve as ecosystems engineers in the sense that networks of their abandoned borings provide habitats for a variety of nestling invertebrates, and associated bioerosion undoubtedly enhances rates of mechanical and chemical degradation, thus influencing the Abatan River profile.
Turnerbactin, a Novel Triscatecholate Siderophore from the Shipworm Endosymbiont Teredinibacter turnerae T7901
Shipworms are marine bivalve mollusks (Family Teredinidae) that use wood for shelter and food. They harbor a group of closely related, yet phylogenetically distinct, bacterial endosymbionts in bacteriocytes located in the gills. This endosymbiotic community is believed to support the host's nutrition in multiple ways, through the production of cellulolytic enzymes and the fixation of nitrogen. The genome of the shipworm endosymbiont Teredinibacter turnerae T7901 was recently sequenced and in addition to the potential for cellulolytic enzymes and diazotrophy, the genome also revealed a rich potential for secondary metabolites. With nine distinct biosynthetic gene clusters, nearly 7% of the genome is dedicated to secondary metabolites. Bioinformatic analyses predict that one of the gene clusters is responsible for the production of a catecholate siderophore. Here we describe this gene cluster in detail and present the siderophore product from this cluster. Genes similar to the entCEBA genes of enterobactin biosynthesis involved in the production and activation of dihydroxybenzoic acid (DHB) are present in this cluster, as well as a two-module non-ribosomal peptide synthetase (NRPS). A novel triscatecholate siderophore, turnerbactin, was isolated from the supernatant of iron-limited T. turnerae T7901 cultures. Turnerbactin is a trimer of N-(2,3-DHB)-L-Orn-L-Ser with the three monomeric units linked by Ser ester linkages. A monomer, dimer, dehydrated dimer, and dehydrated trimer of 2,3-DHB-L-Orn-L-Ser were also found in the supernatant. A link between the gene cluster and siderophore product was made by constructing a NRPS mutant, TtAH03. Siderophores could not be detected in cultures of TtAH03 by HPLC analysis and Fe-binding activity of culture supernatant was significantly reduced. Regulation of the pathway by iron is supported by identification of putative Fur box sequences and observation of increased Fe-binding activity under iron restriction. Evidence of a turnerbactin fragment was found in shipworm extracts, suggesting the production of turnerbactin in the symbiosis.
Membrane Vesicles Can Contribute to Cellulose Degradation by Teredinibacter turnerae, a Cultivable Intracellular Endosymbiont of Shipworms
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood‐eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by liquid chromatography–mass spectrometry (LC–MS/MS) as carbohydrate‐active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB‐dependent receptors, which are essential to carbohydrate and iron acquisition by free‐living bacteria. These observations indicate a potential role for MVs in lignocellulose utilisation by T. turnerae in the free‐living state, suggest possible mechanisms for host–symbiont interaction and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion. When grown in pure culture, Teredinibacter turnerae secretes membrane vesicles (MVs) enriched in carbohydrate‐active enzymes (CAZymes) predicted to be involved in lignocellulose degradation. Activity assays confirm that these MVs retain the ability to hydrolyse cellulose. These findings indicate a potential role for MVs in lignocellulose utilisation and have implications for both symbiosis mechanisms and industrial applications such as enzyme production and biomass conversion.
Fine-scale phylogenetic architecture of a complex bacterial community
Although molecular data have revealed the vast scope of microbial diversity 1 , two fundamental questions remain unanswered even for well-defined natural microbial communities: how many bacterial types co-exist, and are such types naturally organized into phylogenetically discrete units of potential ecological significance? It has been argued that without such information, the environmental function, population biology and biogeography of microorganisms cannot be rigorously explored 2 . Here we address these questions by comprehensive sampling of two large 16S ribosomal RNA clone libraries from a coastal bacterioplankton community. We show that compensation for artefacts generated by common library construction techniques reveals fine-scale patterns of community composition. At least 516 ribotypes (unique rRNA sequences) were detected in the sample and, by statistical extrapolation, at least 1,633 co-existing ribotypes in the sampled population. More than 50% of the ribotypes fall into discrete clusters containing less than 1% sequence divergence. This pattern cannot be accounted for by interoperon variation, indicating a large predominance of closely related taxa in this community. We propose that such microdiverse clusters arise by selective sweeps and persist because competitive mechanisms are too weak to purge diversity from within them.
Genotypic Diversity within a Natural Coastal Bacterioplankton Population
The genomic diversity and relative importance of distinct genotypes within natural bacterial populations have remained largely unknown. Here, we analyze the diversity and annual dynamics of a group of coastal bacterioplankton (greater than 99% 16S ribosomal RNA identity to Vibrio splendidus). We show that this group consists of at least a thousand distinct genotypes, each occurring at extremely low environmental concentrations (on average less than one cell per milliliter). Overall, the genomes show extensive allelic diversity and size variation. Individual genotypes rarely recurred in samples, and allelic distribution did not show spatial or temporal substructure. Ecological considerations suggest that much genotypic and possibly phenotypic variation within natural populations should be considered neutral.
Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae)
Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.