Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24
result(s) for
"Dix, Melissa M."
Sort by:
A proteome-wide atlas of lysine-reactive chemistry
2021
Recent advances in chemical proteomics have begun to characterize the reactivity and ligandability of lysines on a global scale. Yet, only a limited diversity of aminophilic electrophiles have been evaluated for interactions with the lysine proteome. Here, we report an in-depth profiling of >30 uncharted aminophilic chemotypes that greatly expands the content of ligandable lysines in human proteins. Aminophilic electrophiles showed disparate proteomic reactivities that range from selective interactions with a handful of lysines to, for a set of dicarboxaldehyde fragments, remarkably broad engagement of the covalent small-molecule–lysine interactions captured by the entire library. We used these latter ‘scout’ electrophiles to efficiently map ligandable lysines in primary human immune cells under stimulatory conditions. Finally, we show that aminophilic compounds perturb diverse biochemical functions through site-selective modification of lysines in proteins, including protein–RNA interactions implicated in innate immune responses. These findings support the broad potential of covalent chemistry for targeting functional lysines in the human proteome.A deep chemical proteomic investigation of diverse aminophilic electrophiles has identified ligandable lysines across a wide range of human proteins. The proteins cover different functional and structural classes, and the aminophilic electrophiles include compounds that disrupt protein–protein and protein–RNA interactions. This dataset provides a proteome-wide atlas of lysine-reactive chemistry.
Journal Article
Global profiling of phosphorylation-dependent changes in cysteine reactivity
by
Kemper, Esther K.
,
Dix, Melissa M.
,
Cravatt, Benjamin F.
in
631/1647/2067
,
631/337/458
,
631/80/458/1733
2022
Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.
This article describes a chemical proteomic approach to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, thereby affecting their potential to be post-translationally modified and/or targeted by electrophilic small molecules.
Journal Article
Activity-based protein profiling for biochemical pathway discovery in cancer
by
Dix, Melissa M.
,
Cravatt, Benjamin F.
,
Nomura, Daniel K.
in
631/337/475
,
631/553/2710
,
692/699/67
2010
Key Points
Activity-based protein profiling (ABPP) facilitates the discovery of deregulated enzymes in cancer.
Competitive ABPP yields selective inhibitors for functional characterization of cancer enzymes.
ABPP can be integrated with metabolomics to map deregulated enzymatic pathways in cancer.
ABPP can be integrated with other proteomic methods to map proteolytic pathways in cancer.
ABPP probes can be used to image tumour development in living animals.
This Review focuses on activity-based protein profiling, which enables the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When ABPP is integrated with other large-scale profiling methods, it can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and indicate new strategies for treatment.
Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment.
Journal Article
ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth
2021
Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of
NRAS-
mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for
NRAS-
mutant cancers.
ABD957 is a potent and selective inhibitor of the ABHD17 family of depalmitoylases that disrupts N-Ras signaling in human acute myeloid leukemia cells and can synergize with MEK inhibition.
Journal Article
A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors
2014
ABPP combined with quantitative MS enabled identification of specific on- and off-targets of covalent kinase inhibitors. Modifications to inhibitors that alter specificity beyond a defined window can promote kinase-independent toxicity.
Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target–independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.
Journal Article
The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase
2014
Complex hereditary spastic paraplegia (HSP) is a genetic disorder that causes lower limb spasticity and weakness and intellectual disability. Deleterious mutations in the poorly characterized serine hydrolase DDHD2 are a causative basis for recessive complex HSP. DDHD2 exhibits phospholipase activity in vitro, but its endogenous substrates and biochemical functions remain unknown. Here, we report the development of DDHD2-/- mice and a selective, in vivo-active DDHD2 inhibitor and their use in combination with mass spectrometry-based lipidomics to discover that DDHD2 regulates brain triglycérides (triacylglycerols, or TAGs). DDHD2-/- mice show age-dependent TAG elevations in the central nervous system, but not in several peripheral tissues. Large lipid droplets accumulated in DDHD2-/- brains and were localized primarily to the intracellular compartments of neurons. These metabolic changes were accompanied by impairments in motor and cognitive function. Recombinant DDHD2 displays TAG hydrolase activity, and TAGs accumulated in the brains of wild-type mice treated subchronically with a selective DDHD2 inhibitor. These findings, taken together, indicate that the central nervous system possesses a specialized pathway for metabolizing TAGs, disruption of which leads to massive lipid accumulation in neurons and complex HSP syndrome.
Journal Article
Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16
by
Dix, Melissa M.
,
Wucherpfennig, Thomas G.
,
Cravatt, Benjamin F.
in
631/92/475
,
631/92/613
,
631/92/96
2019
Ligand-dependent protein degradation has emerged as a compelling strategy to pharmacologically control the protein content of cells. So far, however, only a limited number of E3 ligases have been found to support this process. Here, we use a chemical proteomic strategy that leverages broadly reactive, cysteine-directed electrophilic fragments coupled to selective ligands for intracellular proteins (for example, SLF for FKBP12, JQ1 for BRD4) to screen for heterobifunctional degrader compounds (or proteolysis targeting chimeras, PROTACs) that operate by covalent adduction of E3 ligases. This approach identified DCAF16—a poorly characterized substrate recognition component of CUL4-DDB1 E3 ubiquitin ligases—as a target of electrophilic PROTACs that promote the nuclear-restricted degradation of proteins. We find that only a modest fraction (~10–40%) of DCAF16 needs to be modified to support protein degradation, pointing to the potential for electrophilic PROTACs to induce neosubstrate degradation without substantially perturbing the function of the participating E3 ligase.
A chemical proteomics strategy identifies DCAF16 as a potential ubiquitin ligase recruiter for cysteine-directed electrophilic PROTACs to promote the degradation of nuclear proteins.
Journal Article
Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs
2019
A fundamental challenge in chemical biology and medicine is to understand and expand the fraction of the human proteome that can be targeted by small molecules. We recently described a strategy that integrates fragment-based ligand discovery with chemical proteomics to furnish global portraits of reversible small-molecule/protein interactions in human cells. Excavating clear structure–activity relationships from these ‘ligandability’ maps, however, was confounded by the distinct physicochemical properties and corresponding overall protein-binding potential of individual fragments. Here, we describe a compelling solution to this problem by introducing a next-generation set of fully functionalized fragments differing only in absolute stereochemistry. Using these enantiomeric probe pairs, or ‘enantioprobes’, we identify numerous stereoselective protein–fragment interactions in cells and show that these interactions occur at functional sites on proteins from diverse classes. Our findings thus indicate that incorporating chirality into fully functionalized fragment libraries provides a robust and streamlined method to discover ligandable proteins in cells.
A set of enantioprobes—photoreactive, clickable fragment pairs differing only in absolute stereochemistry—have been used to provide a robust and streamlined chemical proteomic map of small-molecule/protein interactions in human cells. More than 170 stereoselective fragment–protein interactions were discovered and shown to occur at functional sites on proteins from diverse classes.
Journal Article
An Alternative Terminal Step of the General Secretory Pathway in Staphylococcus aureus
by
Dix, Melissa M.
,
Romesberg, Floyd E.
,
Craney, Arryn
in
ABC transporters
,
Bacteria
,
Bacterial Proteins - genetics
2015
Type I signal peptidase (SPase) is essential for viability in wild-type bacteria because the terminal step of the bacterial general secretory pathway requires its proteolytic activity to release proteins from their membrane-bound N-terminal leader sequences after translocation across the cytoplasmic membrane. Here, we identify the
Staphylococcus aureus
operon
ayrRABC
(SA0337 to SA0340) and show that once released from repression by AyrR, the protein products AyrABC together confer resistance to the SPase inhibitor arylomycin M131 by providing an alternate and novel method of releasing translocated proteins. Thus, the derepression of
ayrRABC
allows cells to bypass the essentiality of SPase. We demonstrate that AyrABC functionally complements SPase by mediating the processing of the normally secreted proteins, albeit in some cases with reduced efficiency and either without cleavage or via cleavage at a site N-terminal to the canonical SPase cleavage site. Thus,
ayrRABC
encodes a secretion stress-inducible alternate terminal step of the general secretory pathway.
IMPORTANCE
Addressing proteins for proper localization within or outside a cell in both eukaryotes and prokaryotes is often accomplished with intrinsic signals which mediate membrane translocation and which ultimately must be removed. The canonical enzyme responsible for the removal of translocation signals is bacterial type I signal peptidase (SPase), which functions at the terminal step of the general secretory pathway and is thus essential in wild-type bacteria. Here, we identify a four-gene operon in
S. aureus
that encodes an alternate terminal step of the general secretory pathway and thus makes SPase nonessential. The results have important implications for protein secretion in bacteria and potentially for protein trafficking in prokaryotes and eukaryotes in general.
Addressing proteins for proper localization within or outside a cell in both eukaryotes and prokaryotes is often accomplished with intrinsic signals which mediate membrane translocation and which ultimately must be removed. The canonical enzyme responsible for the removal of translocation signals is bacterial type I signal peptidase (SPase), which functions at the terminal step of the general secretory pathway and is thus essential in wild-type bacteria. Here, we identify a four-gene operon in
S. aureus
that encodes an alternate terminal step of the general secretory pathway and thus makes SPase nonessential. The results have important implications for protein secretion in bacteria and potentially for protein trafficking in prokaryotes and eukaryotes in general.
Journal Article
Multi-tiered chemical proteomic maps of tryptoline acrylamide–protein interactions in cancer cells
by
Dix, Melissa M.
,
Melillo, Bruno
,
Njomen, Evert
in
639/638/403/935
,
639/638/92/475
,
639/638/92/96
2024
Covalent chemistry is a versatile approach for expanding the ligandability of the human proteome. Activity-based protein profiling (ABPP) can infer the specific residues modified by electrophilic compounds through competition with broadly reactive probes. However, the extent to which such residue-directed platforms fully assess the protein targets of electrophilic compounds in cells remains unclear. Here we evaluate a complementary protein-directed ABPP method that identifies proteins showing stereoselective reactivity with alkynylated, chiral electrophilic compounds—termed stereoprobes. Integration of protein- and cysteine-directed data from cancer cells treated with tryptoline acrylamide stereoprobes revealed generally well-correlated ligandability maps and highlighted features, such as protein size and the proteotypicity of cysteine-containing peptides, that explain gaps in each ABPP platform. In total, we identified stereoprobe binding events for >300 structurally and functionally diverse proteins, including compounds that stereoselectively and site-specifically disrupt MAD2L1BP interactions with the spindle assembly checkpoint complex leading to delayed mitotic exit in cancer cells.
The ligandability of the human proteome can be expanded using covalent chemistry. A multi-tiered chemical proteomic strategy now provides in-depth maps of tryptoline acrylamide–protein interactions in cancer cells. This platform afforded the discovery of stereoselective covalent ligands for hundreds of human proteins, including compounds that disrupt protein–protein interactions regulating the cell cycle.
Journal Article