Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
64 result(s) for "Dizge, Nadir"
Sort by:
Optimization of the electrochemical oxidation of textile wastewater by graphite electrodes by response surface methodology and artificial neural network
In this study, electrochemical oxidation of combed fabric dyeing wastewater was investigated using graphite electrodes. The response surface methodology (RSM) was used to design the experiments via the central composite design (CCD). The planned experiments were done to track color changes and chemical oxygen demand (COD) removal. The experimental results were used to develop optimization models using RSM and the artificial neural network (ANN) and they were compared. The developed models by the two methods were in good agreement with the experimental results. The optimum conditions were found at 150 A/m2, pH 5, and 120 min. The removal efficiencies for color and COD reached 96.6% and 77.69%, respectively. The operating cost at the optimum conditions was also estimated. The energy and the cost of 1 m3 of wastewater required 34.9 kWh and 2.58 US$, respectively. The graphite electrodes can be successfully utilized for treatment of combed fabric dyeing wastewater with reasonable cost.
Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties
The current work concentrated on the green synthesis of silver nanoparticles (AgNPs) through the use of aqueous Citruslimon zest extract, optimizing the different experimental factors required for the formation and stability of AgNPs. The preparation of nanoparticles was confirmed by the observation of the color change of the mixture of silver nitrate, after the addition of the plant extract, from yellow to a reddish-brown colloidal suspension and was established by detecting the surface plasmon resonance band at 535.5 nm, utilizing UV-Visible analysis. The optimum conditions were found to be 1 mM of silver nitrate concentration, a 1:9 ratio extract of the mixture, and a 4 h incubation period. Fourier transform infrared spectroscopy spectrum indicated that the phytochemicals compounds present in Citrus limon zest extract had a fundamental effect on the production of AgNPs as a bio-reducing agent. The morphology, size, and elemental composition of AgNPs were investigated by zeta potential (ZP), dynamic light scattering (DLS), SEM, EDX, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis, which showed crystalline spherical silver nanoparticles. In addition, the antimicrobial and antioxidant properties of this bioactive silver nanoparticle were also investigated. The AgNPs showed excellent antibacterial activity against one Gram-negative pathogens bacteria, Escherichia coli, and one Gram-positive bacteria, Staphylococcus aureus, as well as antifungal activity against Candida albicans. The obtained results indicate that the antioxidant activity of this nanoparticle is significant. This bioactive silver nanoparticle can be used in biomedical and pharmacological fields.
Green synthesis of Quercus coccifera hydrochar in subcritical water medium and evaluation of its adsorption performance for BR18 dye
In this study, we investigated the production conditions of Quercus coccifera hydrochar, which is an inexpensive and easy available adsorbent, for the adsorption of Basic Red 18 (BR18) azo dye. The hydrochar was produced in the eco-friendly subcritical water medium (SWM). The effects of the pH (2–10), adsorbent size (45–106 μm), adsorbent dose (0.5–1.5 g/L), dye concentration (40–455 mg/L), and contact time (5–120 min) were studied via optimization experiments. The optimum conditions were pH 10, particle size of 45 μm, particle amount of 1.5 g/L, dye concentration of 455 mg/L, and 60 min. The removal efficiency increased sharply for the first 5 min; after that the removal efficiency reached a steady state at 60 min, with a maximum removal of 88.7%. The kinetic studies for the adsorption of BR18 dye in aqueous solution using hydrochar showed pseudo-second-order kinetics. The Langmuir and Freundlich isotherm models were used to explain the relationship between adsorbent and adsorbate, and Freundlich isotherm was the most suitable model because of its high regression coefficient (R2) value. The intraparticle diffusion model was used to determine the adsorption mechanism of BR18 onto Q. coccifera acorn hydrochar. Desorption studies were also carried out using different types of acid and different molarities.
Optimization of chromium (VI) reduction in aqueous solution using magnetic Fe3O4 sludge resulting from electrocoagulation process
The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5–7), initial Cr(VI) concentration (10–50 mg/L), contact time (10–45 min), and adsorbent dosage (0.5–1.5 g/L). Cr(VI) reduction optimization reduction experimental sets were designed using response surface design. Cr(VI) reduction optimization results 97.0% removal efficiency and 15.1 mg/g adsorption capacity were obtained at pH 5.0, 1.5 g/L electro-coagulated Fe 3 O 4 sludge, 10 mg/L initial Cr(VI) concentration and 45 min reaction time. According to the isotherm results, the experimental data are compatible with the Freundlich isotherm model, and since it is defined by the pseudo-second order model emphasizes that the driving forces of the Cr(VI) reduction process are rapid transfer of Cr(VI) to the adsorbent surface. The reusability of the adsorbent was investigated and Cr(VI) reduction was achieved at a high rate even in the 5th cycle. All these results clearly show that electro-coagulated Fe 3 O 4 sludge is an effective, inexpensive adsorbent for Cr(VI) removal from wastewater.
Investigation of sesame processing wastewater treatment with combined electrochemical and membrane processes
This study aims to investigate the treatability of the wastewater generated from the sesame seeds dehulling process by a combination of electrochemical techniques with a membrane filtration system. Chemical oxygen demand (COD) and phenol removal performances were studied for four different cathodes material (iron (Fe), aluminum (Al), platinum (Pt), and boron-doped diamond (BDD)) at different current densities in the electrochemical treatment stage. The maximum removal efficiency was obtained when the BDD electrodes were used. The optimum conditions were 100 A/m2 of current density and 120 min of electrolysis period, where 40% and 85% of COD and phenol removals subsequently were achieved. The generated water from the first stage was passed through two different membrane systems. The membrane systems were microfiltration and ultrafiltration. The uptake performance for microfiltration was 22% and 17% for COD and phenol reduction subsequently. The ultrafiltration performed well and has given an additional removal of 27% and 20% of both COD and phenol reduction, respectively. The final results showed the importance of the studied combined systems and the additional value to the final obtained water quality.
Iron Oxide Particles Loaded Activated Carbon Cloth and Comparison of Adsorption and Fenton Reaction for Efficient Cationic and Anionic Dyes Removal
Abstract This paper illustrates an experimental study on the elimination of Remazol Brilliant Blue R (RBBR) and Basic Red 18 (BR 18) dyes from synthetic aqueous solutions with iron oxide particles activated carbon cloth (IACC). The most important objectives of the experimental tests were to investigate the impacts of the different operating parameters, such as solution pH, adsorbent amount, H2O2 concentration and initial dye concentration on both studied colors removal. The experimental results demonstrated that 96.14% RBBR dye and 98.44% BR18 dye removals were observed for initial dye concentration of 100 mg/L with adsorbent amount of 1.0 cm2/100 mL, H2O2 concentration of 2.5 µL/L and optimum pH at the end of 60 min of operation. It was observed that, an increase in initial dye concentration decreased the dye removal efficiency. Optimum pH for the highest RBBR dye removal was 2.5 and 3.0 for BR 18 maximum removal efficiency. It was also observed that the increase in hydrogen peroxide (H2O2) concentration in the solution reduces the dyes removal efficiency. The loaded iron oxide particles on carbon cloth catalyst revealed to be an effective solution for high removal performance of cationic and anionic dyes.
Caustic recovery from caustic-containing polyethylene terephthalate (PET) washing wastewater generated during the recycling of plastic bottles
To prevent water scarcity, wastewater must be discharged to the surface or groundwater after being treated. Another method is to reuse wastewater in some areas after treatment and evaluate it as much as possible. In this study, it is aimed to recover and reuse the caustic (sodium hydroxide, NaOH) used in the recycling of plastic bottles from polyethylene terephthalate (PET) washing wastewater. Chemical substances used in the industry will be significantly reduced with chemical recovery from wastewater. Ultrafiltration (UP150) and nanofiltration (NP010 and NP030) membranes were used for this purpose in our study. Before using nanofiltration membranes, pre-treatment was performed with coagulation-flocculation process to reduce the pollutant accumulation on the membranes. Different coagulants and flocculants were used to find suitable coagulants and flocculants in pre-treatment. The pre-treated wastewater using aluminum oxide, which supplied the highest chemical oxygen demand (COD) removal (76.0%), was used in a dead-end filtration system to be filtered through NP010 and NP030 membranes at different pressures (10–30 bar). In the same filtration system, raw wastewater was filtered through a UP150 membrane. Among these treatment scenarios, the best method that could remove pollutants and provide NaOH recovery was selected. After each treatment, pH, conductivity, COD, and NaOH analyses were performed. The maximum NaOH recovery (98.6%) was obtained with the UP150 membrane at 5 bar.
Treatment of tomato paste wastewater by electrochemical and membrane processes: process optimization and cost calculation
This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25–75 A/m2), and electrolysis time (15–120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56–30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.
The effect of different types of AOPs supported by hydrogen peroxide on the decolorization of methylene blue and viscose fibers dyeing wastewater
Wastewater from the textile industry containing a high concentration of organic and inorganic chemicals has strong color and residual chemical oxygen demand (COD). Therefore, advanced oxidation processes (AOPs) are very good candidates to treat textile industry wastewater. In this study, we investigated the effect of different types of AOPs supported with hydrogen peroxide (H2O2) for the treatment of viscose fibers dyeing wastewater. Fenton, photo-Fenton, and Fenton-supported subcritical water oxidation (FSWO) processes were chosen as AOPs to compare the treatment efficiency of viscose fibers dyeing wastewater. The effects of solution pH, Fe2+ concentration, and H2O2 concentration on the treatment of viscose fibers dyeing wastewater were tested. The maximum color and COD removal efficiency was obtained corresponding to pH 2.5 for all oxidation methods when methylene blue (MB) dye solution was used. However, the maximum efficiencies were obtained at pH 3.0 for real textile wastewater decolorization. The MB dye removal efficiency was increased to 97.22, 100, and 100% for Fenton, photo-Fenton, and FSWO processes, respectively, when the addition of H2O2 concentration was adjusted to 125 mg/L. However, the maximum color removal efficiencies of viscose fibers dyeing wastewater were obtained 56.94, 61.26, 64.11% for Fenton, photo-Fenton, FSWO processes, respectively. As a result, the FSWO showed maximum color removal efficiencies.
Synthesis of PES membranes modified with polyurethane–paraffin wax nanocapsules and performance of bovine serum albumin and humic acid rejection
Membrane fouling is a serious handicap of membrane-based separation, as it reduces permeation flux and hence increases operational and maintenance expenses. Polyurethane–paraffin wax (PU/PW) nanocapsules were integrated into the polyethersulfone membrane to manufacture a composite membrane with higher antifouling and permeability performance against humic acid (HA) and bovine serum albumin (BSA) foulants. All manufactured membranes were characterized by scanning electron microscopy (SEM), scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and contact angle. The contact angle of the pristine polyethersulfone (PES) membrane was measured 73.40 ± 1.32. With the embedding of nanocapsules, the contact angle decreased to 64.55 ± 1.23 for PES/PU/PW 2.0 wt%, and the pure water flux of all composite membranes increased when compared to pristine PES. The pristine PES membrane also has shown the lowest steady-state fluxes at 45.84 and 46.59 L/m2h for BSA and HA, respectively. With the increase of PU/PW nanocapsule ratio from 0.5 to 1.0 wt%, steady-state fluxes increased from 51.96 to 71.61 and from 67.87 to 98.73 L/m2h, respectively, for BSA and HA. The results depicted that BSA and HA rejection efficiencies of PU/PW nanocapsules blended PES membranes increased when compared to pristine PES membranes.