Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
77 result(s) for "Doeppner, Thorsten R."
Sort by:
Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway
Systemic transplantation of oxygen−glucose deprivation (OGD)-preconditioned primary microglia enhances neurological recovery in rodent stroke models, albeit the underlying mechanisms have not been sufficiently addressed. Herein, we analyzed whether or not extracellular vesicles (EVs) derived from such microglia are the biological mediators of these observations and which signaling pathways are involved in the process. Exposing bEnd.3 endothelial cells (ECs) and primary cortical neurons to OGD, the impact of EVs from OGD-preconditioned microglia on angiogenesis and neuronal apoptosis by the tube formation assay and TUNEL staining was assessed. Under these conditions, EV treatment stimulated both angiogenesis and tube formation in ECs and repressed neuronal cell injury. Characterizing microglia EVs by means of Western blot analysis and other techniques revealed these EVs to be rich in TGF-β1. The latter turned out to be a key compound for the therapeutic potential of microglia EVs, affecting the Smad2/3 pathway in both ECs and neurons. EV infusion in stroke mice confirmed the aforementioned in vitro results, demonstrating an activation of the TGF-β/Smad2/3 signaling pathway within the ischemic brain. Furthermore, enriched TGF-β1 in EVs secreted from OGD-preconditioned microglia stimulated M2 polarization of residing microglia within the ischemic cerebral environment, which may contribute to a regulation of an early inflammatory response in postischemic hemispheres. These observations are not only interesting from the mechanistic point of view but have an immediate therapeutic implication as well, since stroke mice treated with such EVs displayed a better functional recovery in the behavioral test analyses. Hence, the present findings suggest a new way of action of EVs derived from OGD-preconditioned microglia by regulating the TGF-β/Smad2/3 pathway in order to promote tissue regeneration and neurological recovery in stroke mice.
Efficacy and safety of intravenous tenecteplase compared to alteplase before mechanical thrombectomy in acute ischemic stroke: a meta-analysis
Background The benefits and risks of tenecteplase (TNK) versus alteplase (ALT) have recently been assessed in acute ischemic stroke (AIS) patients undergoing mechanical thrombectomy (MT) with diverse results. Due to its high fibrin specificity and lack of excitotoxicity, TNK may have a higher efficacy and safety profile. This study aimed to evaluate the benefits and risks of TNK compared to ALT in AIS patients prior to thrombectomy. Methods We systematically searched four key databases, PubMed, Embase, Web of Science and Cochrane Library until January 27, 2024 for clinical studies evaluating the effects of TNK versus ALT in patients with large vessel occlusion undergoing MT. A random-effect meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results Ten studies involving 3722 patients receiving TNK (1266 patients) or ALT (2456 patients) were included (age: 69.05 ± 14.95 years; 55.64% male). Compared to ALT-treated patients, TNK-treated patients demonstrated significantly higher rates of early recanalization (odds ratio 2.02, 95%-confidence interval 1.20–3.38, p = 0.008) without increased risk of symptomatic intracerebral hemorrhage (1.06, 0.64–1.76, p = 0.82) or intracerebral hemorrhage (1.21, 0.66–2.25, p = 0.54). TNK-treated patients showed similar rates of functional independence at 90 days (1.13, 0.87–1.46, p = 0.37) as ALT-treated patients, but lower rates of mortality within 90 days (0.65, 0.44–0.96, p = 0.03). Conclusion TNK is superior to ALT in achieving early recanalization and is associated with lower mortality within 90 days in AIS patients undergoing MT. Compared with ALT, TNK does not significantly alter functional independence at 90 days, symptomatic intracerebral hemorrhage or intracerebral hemorrhage.
Extracellular Vesicles Improve Post‐Stroke Neuroregeneration and Prevent Postischemic Immunosuppression
The effects of mesenchymal stem cell (MSC)‐derived extracellular vesicles were compared with those of MSCs i.v. delivered 1, 3, and 5 days or 1 day after focal cerebral ischemia in mice. Motor coordination deficits, brain injury, immune responses in peripheral blood and brain, and cerebral angiogenesis and neurogenesis were analyzed. Postischemic immunosuppression was attenuated in peripheral blood 6 days after ischemia, providing an appropriate external milieu for successful brain remodeling. Although the initial concepts of stem cell therapy aimed at replacing lost tissue, more recent evidence has suggested that stem and progenitor cells alike promote postischemic neurological recovery by secreted factors that restore the injured brain's capacity to reshape. Specifically, extracellular vesicles (EVs) derived from stem cells such as exosomes have recently been suggested to mediate restorative stem cell effects. In order to define whether EVs indeed improve postischemic neurological impairment and brain remodeling, we systematically compared the effects of mesenchymal stem cell (MSC)‐derived EVs (MSC‐EVs) with MSCs that were i.v. delivered to mice on days 1, 3, and 5 (MSC‐EVs) or on day 1 (MSCs) after focal cerebral ischemia in C57BL6 mice. For as long as 28 days after stroke, motor coordination deficits, histological brain injury, immune responses in the peripheral blood and brain, and cerebral angiogenesis and neurogenesis were analyzed. Improved neurological impairment and long‐term neuroprotection associated with enhanced angioneurogenesis were noticed in stroke mice receiving EVs from two different bone marrow‐derived MSC lineages. MSC‐EV administration closely resembled responses to MSCs and persisted throughout the observation period. Although cerebral immune cell infiltration was not affected by MSC‐EVs, postischemic immunosuppression (i.e., B‐cell, natural killer cell, and T‐cell lymphopenia) was attenuated in the peripheral blood at 6 days after ischemia, providing an appropriate external milieu for successful brain remodeling. Because MSC‐EVs have recently been shown to be apparently safe in humans, the present study provides clinically relevant evidence warranting rapid proof‐of‐concept studies in stroke patients. Significance Transplantation of mesenchymal stem cells (MSCs) offers an interesting adjuvant approach next to thrombolysis for treatment of ischemic stroke. However, MSCs are not integrated into residing neural networks but act indirectly, inducing neuroprotection and promoting neuroregeneration. Although the mechanisms by which MSCs act are still elusive, recent evidence has suggested that extracellular vesicles (EVs) might be responsible for MSC‐induced effects under physiological and pathological conditions. The present study has demonstrated that EVs are not inferior to MSCs in a rodent stroke model. EVs induce long‐term neuroprotection, promote neuroregeneration and neurological recovery, and modulate peripheral post‐stroke immune responses. Also, because EVs are well‐tolerated in humans, as previously reported, the administration of EVs under clinical settings might set the path for a novel and innovative therapeutic stroke concept without the putative side effects attached to stem cell transplantation.
The dual role of microglia in ischemic stroke and its modulation via extracellular vesicles and stem cells
Stem cell‐based therapies and extracellular vesicle (EV) treatment have demonstrated significant potential for neuroprotection against ischemic stroke. Although the neuroprotective mechanisms are not yet fully understood, targeting microglia is central to promoting neuroprotection. Microglia are the resident immune cells of the central nervous system. These cells are crucial in the pathogenesis of ischemic stroke. They respond rapidly to the site of injury by releasing pro‐inflammatory cytokines, phagocytizing dead cells and debris, and recruiting peripheral immune cells to the ischemic area. Although these responses are essential for clearing damage and initiating tissue repair, excessive or prolonged microglial activation can exacerbate brain injury, leading to secondary neuroinflammation and neurodegeneration. Moreover, microglia exhibit a dynamic range of activation states with the so‐called M1 pro‐inflammatory and M2 anti‐inflammatory phenotypes, representing the two ends of the spectrum. The delivery of both EVs and stem cells modulates microglial activation, suppressing pro‐inflammatory genes, influencing the expression of transcription factors, and altering receptor expression, ultimately contributing to neuroprotection. These findings underscore the importance of understanding the complex and dynamic role of microglia in the development of effective neuroprotective strategies to reduce the effects of ischemic stroke. In this review, we examine the current state of knowledge regarding the role of microglia in ischemic stroke, including their molecular and cellular mechanisms, activation states, and interactions with other cells. We also discuss the multifaceted contributions of microglia to stem cell‐ and EV‐based neuroprotection during an ischemic stroke to provide a comprehensive understanding of microglial functions and their potential implications in stroke therapies. Microglia activation after stroke and the effect of stem cells and extracellular vesicles on this activation Highlights Microglia play a dual role in the neuroinflammation response to ischemic stroke, leading to both detrimental and protective outcomes, primarily depending on their polarization. Besides the classical M1 and M2 polarization types, mixed phenotypes exist and could be a future target for neuroprotective strategies. Extracellular vesicles (EVs) and stem cells have shown to mediate their neuroprotective effects, among others, through the modulation of microglia polarization, leading to the suppression of pro‐inflammatory genes, influencing the expression of transcription factors, and altering receptor expression. Novel approaches, such as preconditioning, for example, in a hypoxic environment, improve their efficacy in microglia modulation and can prospectively lead to completely novel treatment strategies.
Acute and Post-acute Neuromodulation Induces Stroke Recovery by Promoting Survival Signaling, Neurogenesis, and Pyramidal Tract Plasticity
Repetitive transcranial magnetic stimulation (rTMS) has gained interest as a non-invasive treatment for stroke based on the data promoting its effects on functional recovery. However, the exact action mechanisms by which the rTMS exert beneficial effects in cellular and molecular aspect are largely unknown. To elucidate the effects of high- and low-frequency rTMS in the acute-ischemic brain, we examined how rTMS influences injury development, cerebral blood flow (CBF), DNA fragmentation, neuronal survival, pro- and anti-apoptotic protein activations after 30 and 90 min of focal cerebral ischemia. In addition, inflammation, angiogenesis, growth factors and axonal outgrowth related gene expressions, were analyzed. Furthermore, we have investigated the effects of rTMS on post-acute ischemic brain, particularly on spontaneous locomotor activity, perilesional tissue remodeling, axonal sprouting of corticobulbar tracts, glial scar formation and cell proliferation, in which rTMS was applied starting 3 days after the stroke onset for 28 days. In the high-frequency rTMS received animals reduced DNA fragmentation, infarct volume and improved CBF were observed, which were associated with increased Bcl-xL activity and reduced Bax, caspase-1, and caspase-3 activations. Moreover, increased angiogenesis, growth factors; and reduced inflammation and axonal sprouting related gene expressions were observed. These results correlated with reduced microglial activation, neuronal degeneration, glial scar formation and improved functional recovery, tissue remodeling, contralesional pyramidal tract plasticity and neurogenesis in the subacute rTMS treated animals. Overall, we propose that high-frequency rTMS in stroke patients can be used to promote functional recovery by inducing the endogenous repair and recovery mechanisms of the brain.
Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales
Extracellular vesicles (EVs) provide a complex means of intercellular signalling between cells at local and distant sites, both within and between different organs. According to their cell-type specific signatures, EVs can function as a novel class of biomarkers for a variety of diseases, and can be used as drug-delivery vehicles. Furthermore, EVs from certain cell types exert beneficial effects in regenerative medicine and for immune modulation. Several techniques are available to harvest EVs from various body fluids or cell culture supernatants. Classically, differential centrifugation, density gradient centrifugation, size-exclusion chromatography and immunocapturing-based methods are used to harvest EVs from EV-containing liquids. Owing to limitations in the scalability of any of these methods, we designed and optimised a polyethylene glycol (PEG)-based precipitation method to enrich EVs from cell culture supernatants. We demonstrate the reproducibility and scalability of this method and compared its efficacy with more classical EV-harvesting methods. We show that washing of the PEG pellet and the re-precipitation by ultracentrifugation remove a huge proportion of PEG co-precipitated molecules such as bovine serum albumine (BSA). However, supported by the results of the size exclusion chromatography, which revealed a higher purity in terms of particles per milligram protein of the obtained EV samples, PEG-prepared EV samples most likely still contain a certain percentage of other non-EV associated molecules. Since PEG-enriched EVs revealed the same therapeutic activity in an ischemic stroke model than corresponding cells, it is unlikely that such co-purified molecules negatively affect the functional properties of obtained EV samples. In summary, maybe not being the purification method of choice if molecular profiling of pure EV samples is intended, the optimised PEG protocol is a scalable and reproducible method, which can easily be adopted by laboratories equipped with an ultracentrifuge to enrich for functional active EVs.
Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles
The therapeutic potential of mesenchymal stem cells (MSCs) is out of the question. Yet, recent drawbacks have resulted in a strategic shift towards the application of MSC-derived cell-free products such as extracellular vesicles (EVs). Recent reports revealed that functional properties of MSCs, including EV secretion patterns, correlate with microenvironmental cues. These findings highlight the urgent need for defining the optimal circumstances for EV preparation. Considering the limitations of primary cells, we employed immortalized cells as an alternative source to prepare therapeutically sufficient EV numbers. Herein, the effects of different conditional environments are explored on human TERT-immortalized MSCs (hTERT-MSCs). The latter were transduced to overexpress IDO1 , PTGS2, and TGF-β1 transgenes either alone or in combination, and their immunomodulatory properties were analyzed thereafter. Likewise, EVs derived from these various MSCs were extensively characterized. hTERT-MSCs-IDO1 exerted superior inhibitory effects on lymphocytes, significantly more than hTERT-MSCs-IFN-γ. As such, IDO1 overexpression promoted the immunomodulatory properties of such enriched EVs. Considering the limitations of cell therapy like tumor formation and possible immune responses in the host, the results presented herein might be considered as a feasible model for the induction of immunomodulation in off-the-shelf and cell-free therapeutics, especially for autoimmune diseases.
High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation
High-density lipoprotein (HDL) has previously been shown to promote angiogenesis. However, the mechanisms by which HDL enhances the formation of blood vessels remain to be defined. To address this, the effects of HDL on the proliferation, transwell migration and tube formation of human umbilical vein endothelial cells were investigated. By examining the abundance and phosphorylation (i.e., activation) of the vascular endothelial growth factor receptor VEGFR2 and modulating the activity of the sphingosine-1 phosphate receptors S1P1–3 and VEGFR2, we characterized mechanisms controlling angiogenic responses in response to HDL exposure. Here, we report that HDL dose-dependently increased endothelial proliferation, migration and tube formation. These events were in association with increased VEGFR2 abundance and rapid VEGFR2 phosphorylation at Tyr1054/Tyr1059 and Tyr1175 residues in response to HDL. Blockade of VEGFR2 activation by the VEGFR2 inhibitor SU1498 markedly abrogated the pro-angiogenic capacity of HDL. Moreover, the S1P3 inhibitor suramin prevented VEGFR2 expression and abolished endothelial migration and tube formation, while the S1P1 agonist CYM-5442 and the S1P2 inhibitor JTE-013 had no effect. Last, the role of S1P3 was further confirmed in regulation of S1P-induced endothelial proliferation, migration and tube formation via up-regulation and activation of VEGFR2. Together, these findings argue that HDL promotes angiogenesis via S1P3-dependent up-regulation and activation of VEGFR2 and also suggest that the S1P–S1P3–VEGFR2 signaling cascades as a novel target for HDL-modulating therapy implicated in vascular remodeling and functional recovery in atherosclerotic diseases such as myocardial infarction and ischemic stroke.
Lithium modulates miR‐1906 levels of mesenchymal stem cell‐derived extracellular vesicles contributing to poststroke neuroprotection by toll‐like receptor 4 regulation
Lithium is neuroprotective in preclinical stroke models. In addition to that, poststroke neuroregeneration is stimulated upon transplantation of mesenchymal stem cells (MSCs). Preconditioning of MSCs with lithium further enhances the neuroregenerative potential of MSCs, which act by secreting extracellular vesicles (EVs). The present work analyzed whether MSC preconditioning with lithium modifies EV secretion patterns, enhancing the therapeutic potential of such derived EVs (Li‐EVs) in comparison with EVs enriched from native MSCs. Indeed, Li‐EVs significantly enhanced the resistance of cultured astrocytes, microglia, and neurons against hypoxic injury when compared with controls and to native EV‐treated cells. Using a stroke mouse model, intravenous delivery of Li‐EVs increased neurological recovery and neuroregeneration for as long as 3 months in comparison with controls and EV‐treated mice, albeit the latter also showed significantly better behavioral test performance compared with controls. Preconditioning of MSCs with lithium also changed the secretion patterns for such EVs, modifying the contents of various miRNAs within these vesicles. As such, Li‐EVs displayed significantly increased levels of miR‐1906, which has been shown to be a new regulator of toll‐like receptor 4 (TLR4) signaling. Li‐EVs reduced posthypoxic and postischemic TLR4 abundance, resulting in an inhibition of the nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) signaling pathway, decreased proteasomal activity, and declined both inducible NO synthase and cyclooxygenase‐2 expression, all of which culminated in reduced levels of poststroke cerebral inflammation. Conclusively, the present study demonstrates, for the first time, an enhanced therapeutic potential of Li‐EVs compared with native EVs, interfering with a novel signaling pathway that yields both acute neuroprotection and enhanced neurological recovery. Lithium‐treated extracellular vesicles (Li‐EVs) induce neuroprotection, neuroregeneration, and neurological recovery under in vitro and in vivo stroke conditions. Increased concentrations of intravesicular miR‐1906 due to lithium treatment reduce toll‐like receptor 4 expression patterns. The latter results in reduction of NF‐κB activation and reduced proteasomal activity followed by decreased levels of pro‐inflammatory mediators within the ischemic brain. Likewise, Li‐EVs reverse the poststroke peripheral immunosuppression.
Preconditioning Concepts for the Therapeutic Use of Extracellular Vesicles Against Stroke
Abstract Various preclinical stroke models have demonstrated the neuroprotective effects of extracellular vesicles (EVs) obtained from several types of cells, including neurons, astrocytes, microglia, neuronal progenitor cells, bone marrow stem cells, and mesenchymal stem cells. EVs interfere with key mechanisms in stroke pathophysiology such as cell death, neuroinflammation, autophagy, and angiogenesis. The mode of action and efficacy depend on the specific EV content, including miRNAs, proteins, and lipids, which can be modified through (I) bioengineering methods, (II) choice of source cells, and (III) modification of the source cell environment. Indeed, modifying the environment by preconditioning the EV-secreting cells with oxygen-glucose deprivation or medium modification revealed superior neuroprotective effects in stroke models. Although the concept of preconditioned EVs is relatively novel, it holds promise for the future treatment of ischemic stroke. Here, we give a brief overview about the main mechanisms of EV-induced neuroprotection and discuss the current status of preconditioning concepts for EV-treatment of ischemic stroke. Graphical Abstract Graphical Abstract