Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
162 result(s) for "Doglioni, Claudio"
Sort by:
The pathogenic role of epithelial and endothelial cells in early-phase COVID-19 pneumonia: victims and partners in crime
Current understanding of the complex pathogenesis of COVID-19 interstitial pneumonia pathogenesis in the light of biopsies carried out in early/moderate phase and histology data obtained at postmortem analysis is discussed. In autopsies the most observed pattern is diffuse alveolar damage with alveolar-epithelial type-II cell hyperplasia, hyaline membranes, and frequent thromboembolic disease. However, these observations cannot explain some clinical, radiological and physiopathological features observed in SARS-CoV-2 interstitial pneumonia, including the occurrence of vascular enlargement on CT and preserved lung compliance in subjects even presenting with or developing respiratory failure. Histological investigation on early-phase pneumonia on perioperative samples and lung biopsies revealed peculiar morphological and morpho-phenotypical changes including hyper-expression of phosphorylated STAT3 and immune checkpoint molecules (PD-L1 and IDO) in alveolar-epithelial and endothelial cells. These features might explain in part these discrepancies.
Detection of clustered circulating tumour cells in early breast cancer
Circulating tumour cell (CTC) clusters have been proposed to be major players in the metastatic spread of breast cancer, particularly during advanced disease stages. Yet, it is unclear whether or not they manifest in early breast cancer, as their occurrence in patients with metastasis-free primary disease has not been thoroughly evaluated. In this study, exploiting nanostructured titanium oxide-coated slides for shear-free CTC identification, we detect clustered CTCs in the curative setting of multiple patients with early breast cancer prior to surgical treatment, highlighting their presence already at early disease stages. These results spotlight an important aspect of metastasis biology and the possibility to intervene with anti-cluster therapeutics already during the early manifestation of breast cancer.
A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness
Inactivation of p53 contributes significantly to the dismal prognosis of breast tumors, most notably triple-negative breast cancers (TNBCs). How the relief from p53 tumor suppressive functions results in tumor cell aggressive behavior is only partially elucidated. In an attempt to shed light on the implication of microRNAs in this context, we discovered a new signaling axis involving p53, miR-30a and ZEB2. By an in silico approach we identified miR-30a as a putative p53 target and observed that in breast tumors reduced miR-30a expression correlated with p53 inactivation, lymph node positivity and poor prognosis. We demonstrate that p53 binds the MIR30A promoter and induces the transcription of both miRNA strands 5p and 3p. Both miR-30a-5p and -3p showed the capacity of targeting ZEB2, a transcription factor involved in epithelial–mesenchymal transition (EMT), tumor cell migration and drug resistance. Intriguingly, we found that p53 does restrain ZEB2 expression via miR-30a. Finally, we provide evidence that the new p53/miR-30a/ZEB2 axis controls tumor cell invasion and distal spreading and impinges upon miR-200c expression. Overall, this study highlights the existence of a novel axis linking p53 to EMT via miR-30a, and adds support to the notion that miRNAs represent key elements of the complex network whereby p53 inactivation affects TNBC clinical behavior.
Oncogene-induced senescence in hematopoietic progenitors features myeloid restricted hematopoiesis, chronic inflammation and histiocytosis
ABSTRACT Activating mutations in the BRAF-MAPK pathway have been reported in histiocytoses, hematological inflammatory neoplasms characterized by multi-organ dissemination of pro-inflammatory myeloid cells. Here, we generate a humanized mouse model of transplantation of human hematopoietic stem and progenitor cells (HSPCs) expressing the activated form of BRAF ( BRAF V600E ). All mice transplanted with BRAF V600E -expressing HSPCs succumb to bone marrow failure, displaying myeloid-restricted hematopoiesis and multi-organ dissemination of aberrant mononuclear phagocytes. At the basis of this aggressive phenotype, we uncover the engagement of a senescence program, characterized by DNA damage response activation and a senescence-associated secretory phenotype, which affects also non-mutated bystander cells. Mechanistically, we identify TNFα as a key determinant of paracrine senescence and myeloid-restricted hematopoiesis and show that its inhibition dampens inflammation, delays disease onset and rescues hematopoietic defects in bystander cells. Our work establishes that senescence in the human hematopoietic system links oncogene-activation to the systemic inflammation observed in histiocytic neoplasms. BRAF-MAPK activating mutations are reported in histiocytoses—hematological neoplasms with widespread pro-inflammatory myeloid cells. Here, the authors show that an activating mutant BRAF in haematopoietic stem and progenitor cells causes an oncogene-induced senescence response leading to myeloid restricted haematopoiesis, inflammation and histiocytosis.
Covid-19 Interstitial Pneumonia: Histological and Immunohistochemical Features on Cryobiopsies
Abstract Background: The pathogenetic steps leading to Covid-19 interstitial pneumonia remain to be clarified. Most postmortem studies to date reveal diffuse alveolar damage as the most relevant histologic pattern. Antemortem lung biopsy may however provide more precise data regarding the earlier stages of the disease, providing a basis for novel treatment approaches. Objectives: To ascertain the morphological and immunohistochemical features of lung samples obtained in patients with moderate Covid-19 pneumonia. Methods: Transbronchial lung cryobiopsy was carried out in 12 Covid-19 patients within 20 days of symptom onset. Results: Histopathologic changes included spots of patchy acute lung injury with alveolar type II cell hyperplasia, with no evidence of hyaline membranes. Strong nuclear expression of phosphorylated STAT3 was observed in >50% of AECII. Interalveolar capillaries showed enlarged lumen and were in part arranged in superposed rows. Pulmonary venules were characterized by luminal enlargement, thickened walls, and perivascular CD4+ T-cell infiltration. A strong nuclear expression of phosphorylated STAT3, associated with PD-L1 and IDO expression, was observed in endothelial cells of venules and interstitial capillaries. Alveolar spaces macrophages exhibited a peculiar phenotype (CD68, CD11c, CD14, CD205, CD206, CD123/IL3AR, and PD-L1). Conclusions: Morphologically distinct features were identified in early stages of Covid-19 pneumonia, with epithelial and endothelial cell abnormalities different from either classical interstitial lung diseases or diffuse alveolar damage. Alveolar type II cell hyperplasia was a prominent event in the majority of cases. Inflammatory cells expressed peculiar phenotypes. No evidence of hyaline membranes and endothelial changes characterized by IDO expression might in part explain the compliance and the characteristic pulmonary vasoplegia observed in less-advanced Covid-19 pneumonia.
Evidence of a common cell origin in a case of pancreatic mixed intraductal papillary mucinous neoplasm–neuroendocrine tumor
Recently, the term mixed neuroendocrine non-neuroendocrine neoplasms (MiNEN) has been proposed as an umbrella definition covering different possible combinations of mixed neuroendocrine-exocrine neoplasms. Among these, the adenoma plus neuroendocrine tumor (NET) combination is among the rarest and not formally recognized by the 2019 WHO Classification. In this setting, the debate between either collision tumors or true mixed neoplasms is still unsolved. In this report, a pancreatic intraductal papillary mucinous neoplasm (IPMN) plus a NET is described, and the molecular investigations showed the presence in both populations of the same KRAS, GNAS, and CDKN2A mutations and the amplification of the CCND1 gene. These data prove clonality and support a common origin of both components, therefore confirming the true mixed nature. For this reason, mixed neuroendocrine-exocrine neoplasms, in which the exocrine component is represented by a glandular precursor lesion (adenoma/IPMN) only, should be included into the MiNEN family.
The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy
gamma-Retroviral vectors (gammaRVs), which are commonly used in gene therapy, can trigger oncogenesis by insertional mutagenesis. Here, we have dissected the contribution of vector design and viral integration site selection (ISS) to oncogenesis using an in vivo genotoxicity assay based on transplantation of vector-transduced tumor-prone mouse hematopoietic stem/progenitor cells. By swapping genetic elements between gammaRV and lentiviral vectors (LVs), we have demonstrated that transcriptionally active long terminal repeats (LTRs) are major determinants of genotoxicity even when reconstituted in LVs and that self-inactivating (SIN) LTRs enhance the safety of gammaRVs. By comparing the genotoxicity of vectors with matched active LTRs, we were able to determine that substantially greater LV integration loads are required to approach the same oncogenic risk as gammaRVs. This difference in facilitating oncogenesis is likely to be explained by the observed preferential targeting of cancer genes by gammaRVs. This integration-site bias was intrinsic to gammaRVs, as it was also observed for SIN gammaRVs that lacked genotoxicity in our model. Our findings strongly support the use of SIN viral vector platforms and show that ISS can substantially modulate genotoxicity.
Amsterdam International Consensus Meeting: tumor response scoring in the pathology assessment of resected pancreatic cancer after neoadjuvant therapy
Histopathologically scoring the response of pancreatic ductal adenocarcinoma (PDAC) to neoadjuvant treatment can guide the selection of adjuvant therapy and improve prognostic stratification. However, several tumor response scoring (TRS) systems exist, and consensus is lacking as to which system represents best practice. An international consensus meeting on TRS took place in November 2019 in Amsterdam, The Netherlands. Here, we provide an overview of the outcomes and consensus statements that originated from this meeting. Consensus (≥80% agreement) was reached on a total of seven statements: (1) TRS is important because it provides information about the effect of neoadjuvant treatment that is not provided by other histopathology-based descriptors. (2) TRS for resected PDAC following neoadjuvant therapy should assess residual (viable) tumor burden instead of tumor regression. (3) The CAP scoring system is considered the most adequate scoring system to date because it is based on the presence and amount of residual cancer cells instead of tumor regression. (4) The defining criteria of the categories in the CAP scoring system should be improved by replacing subjective terms including “minimal” or “extensive” with objective criteria to evaluate the extent of viable tumor. (5) The improved, consensus-based system should be validated retrospectively and prospectively. (6) Prospective studies should determine the extent of tissue sampling that is required to ensure adequate assessment of the residual cancer burden, taking into account the heterogeneity of tumor response. (7) In future scientific publications, the extent of tissue sampling should be described in detail in the “Materials and methods” section.
R Status is a Relevant Prognostic Factor for Recurrence and Survival After Pancreatic Head Resection for Ductal Adenocarcinoma
BackgroundThe prognostic role of resection margins in pancreatic ductal adenocarcinoma (PDAC) is debated. This study aimed to investigate the impact that global and individual resection margin status after pancreatic head resection for PDAC has on disease-free survival (DFS) and disease-specific survival (DSS).MethodsSurgical specimens of pancreaticoduodenectomy/total pancreatectomy performed for PDAC were examined with a standardized protocol. Surgical margin status (biliary, pancreatic neck, duodenal, anterior and posterior pancreatic, superior mesenteric vein groove and superior mesenteric artery margins) was classified as the presence of malignant cells (1) directly at the inked surface (R1 direct), (2) within less than 1 mm (R1 ≤ 1 mm), or (3) with a distance greater than 1 mm (R0). Patients with a positive neck margin at the final histology were excluded from the study.ResultsOf the 362 patients included in the study, 179 patients (49.4 %) had an R0 resection, 123 patients (34 %) had an R1 ≤ 1 mm resection, and 60 patients (16.6 %) had an R1 direct resection. The independent predictors of DFS were R1 direct resection (hazard ratio [HR], 1.49), R1 ≤ 1 mm resection (HR, 1.38), involvement of one margin (HR, 1.36), and involvement of two margins or more (HR, 1.55). When surgical margins were analyzed separately, only R1 ≤ 1 mm superior mesenteric vein margin (HR, 1.58) and R1 direct posterior margin (HR, 1.69) were independently associated with DFS.ConclusionsPositive R status is an independent predictor of DFS (R1 direct and R1 ≤ 1 mm definitions) and of DSS (R1 direct). The presence of multiple positive margins is a risk factor for cancer recurrence and poor survival. Different surgical margins could have different prognostic roles.
Uncovering and Dissecting the Genotoxicity of Self-inactivating Lentiviral Vectors In Vivo
Self-inactivating (SIN) lentiviral vectors (LV) have an excellent therapeutic potential as demonstrated in preclinical studies and clinical trials. However, weaker mechanisms of insertional mutagenesis could still pose a significant risk in clinical applications. Taking advantage of novel in vivo genotoxicity assays, we tested a battery of LV constructs, including some with clinically relevant designs, and found that oncogene activation by promoter insertion is the most powerful mechanism of early vector-induced oncogenesis. SIN LVs disabled in their capacity to activate oncogenes by promoter insertion were less genotoxic and induced tumors by enhancer-mediated activation of oncogenes with efficiency that was proportional to the strength of the promoter used. On the other hand, when enhancer activity was reduced by using moderate promoters, oncogenesis by inactivation of tumor suppressor gene was revealed. This mechanism becomes predominant when the enhancer activity of the internal promoter is shielded by the presence of a synthetic chromatin insulator cassette. Our data provide both mechanistic insights and quantitative readouts of vector-mediated genotoxicity, allowing a relative ranking of different vectors according to these features, and inform current and future choices of vector design with increasing biosafety.