Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
49
result(s) for
"Dolstra Harry"
Sort by:
Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity
2021
Lethal hit delivery by cytotoxic T lymphocytes (CTL) towards B lymphoma cells occurs as a binary, “yes/no” process. In non-hematologic solid tumors, however, CTL often fail to kill target cells during 1:1 conjugation. Here we describe a mechanism of “additive cytotoxicity” by which time-dependent integration of sublethal damage events, delivered by multiple CTL transiting between individual tumor cells, mediates effective elimination. Reversible sublethal damage includes perforin-dependent membrane pore formation, nuclear envelope rupture and DNA damage. Statistical modeling reveals that 3 serial hits delivered with decay intervals below 50 min discriminate between tumor cell death or survival after recovery. In live melanoma lesions in vivo, sublethal multi-hit delivery is most effective in interstitial tissue where high CTL densities and swarming support frequent serial CTL-tumor cell encounters. This identifies CTL-mediated cytotoxicity by multi-hit delivery as an incremental and tunable process, whereby accelerating damage magnitude and frequency may improve immune efficacy.
Cytotoxic CD8
+
T lymphocytes (CTL) often fail to kill tumour cells in one-to-one interactions. Here the authors show that these sublethal interactions from multiple CTL can add up over time and achieve tumour cell killing by additive cytotoxicity.
Journal Article
Hematopoietic cell transplantation and cellular therapy survey of the EBMT: monitoring of activities and trends over 30 years
2021
Numbers of Hematopoietic cell transplantation (HCT) in Europe and collaborating countries continues to rise with 48,512 HCT in 43,581 patients, comprising of 19,798 (41%) allogeneic and 28,714 (59%) autologous, reported by 700 centers in 51 countries during 2019. Main indications were myeloid malignancies 10,764 (25%), lymphoid malignancies 27,895 (64%), and nonmalignant disorders 3173 (7%). A marked growth in CAR-T cellular therapies from 151 in 2017 to 1134 patients in 2019 is observed. This year’s analyses focus on changes over 30 years. Since the first survey in 1990 where 143 centers reported 4234 HCT, the number has increased to 700 centers and 48,512 HCT. Transplants were reported in 20 countries in 1990, and 51, 30 years later. More than 800,000 HCT in 715,000 patients were reported overall. Next to the massive expansion of HCT technology, most notable developments include the success of unrelated donor and haploidentical HCT, an increase followed by decrease in the number of cord blood transplants, use of reduced intensity HCT in older patients, and the phenomenal rise in cellular therapy. This annual report of the European Society for Blood and Marrow Transplantation (EBMT) reflects current activity and highlights important trends vital for health care planning.
Journal Article
A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells
2021
The low 5-year survival rate for patients with acute myeloid leukemia (AML), primarily caused due to disease relapse, emphasizes the need for better therapeutic strategies. Disease relapse is facilitated by leukemic stem cells (LSCs) that are resistant to standard chemotherapy and promote tumor growth. To target AML blasts and LSCs using natural killer (NK) cells, we have developed a trispecific killer engager (TriKE
TM
) molecule containing a humanized anti-CD16 heavy chain camelid single-domain antibody (sdAb) that activates NK cells, an IL-15 molecule that drives NK-cell priming, expansion and survival, and a single-chain variable fragment (scFv) against human CLEC12A (CLEC12A TriKE). CLEC12A is a myeloid lineage antigen that is highly expressed by AML cells and LSCs, but not expressed by normal hematopoietic stem cells (HSCs), thus minimizing off-target toxicity. The CLEC12A TriKE induced robust NK-cell specific proliferation, enhanced NK-cell activation, and killing of both AML cell lines and primary patient-derived AML blasts in vitro while sparing healthy HSCs. Additionally, the CLEC12A TriKE was able to reduce tumor burden in preclinical mouse models. These findings highlight the clinical potential of the CLEC12A TriKE for the effective treatment of AML.
Journal Article
Impact of the SARS-CoV-2 pandemic on hematopoietic cell transplantation and cellular therapies in Europe 2020: a report from the EBMT activity survey
by
Dolstra Harry
,
Yakoub-Agha Ibrahim
,
Corbacioglu Selim
in
Autografts
,
Autoimmune diseases
,
Cell therapy
2022
In 2020, 45,364 HCT in 41,016 patients, 18,796 (41%) allogeneic and 26,568 (59%) autologous in 690 centers were reported. Changes observed were as follows: total number of HCT −6.5%, allogeneic HCT −5.1%, autologous HCT −7.5%, and were more pronounced in non-malignant disorders for allogeneic HCT and in autoimmune disease for autologous HCT. Main indications were myeloid malignancies 10,441 (25%), lymphoid malignancies 26,120 (64%) and non-malignant disorders 2532 (6%). A continued growth in CAR-T cellular therapies to 1874 (+65%) patients in 2020 was observed. In allogeneic HCT, the use of haploidentical donors increased while use of unrelated and sibling donors decreased. Cord blood HCT increased by 11.7% for the first time since 2012. There was a significant increase in the use of non-myeloablative but a drop in myeloablative conditioning and in use of marrow as stem cell source. We interpreted these changes as being due to the SARS-CoV-2 pandemic starting early in 2020 in Europe and provided additional data reflecting the varying impact of the pandemic across selected countries and larger cities. The transplant community confronted with the pandemic challenge, continued in providing patients access to treatment. This annual report of the EBMT reflects current activities useful for health care planning.
Journal Article
The challenge of COVID-19 and hematopoietic cell transplantation; EBMT recommendations for management of hematopoietic cell transplant recipients, their donors, and patients undergoing CAR T-cell therapy
by
Dolstra Harry
,
Yakoub-Agha Ibrahim
,
Verhoeven Bregje
in
Autografts
,
Cell therapy
,
Coronaviruses
2020
The new coronavirus SARS-CoV-2 has rapidly spread over the world causing the disease by WHO called COVID-19. This pandemic poses unprecedented stress on the health care system including programs performing allogeneic and autologous hematopoietic cell transplantation (HCT) and cellular therapy such as with CAR T cells. Risk factors for severe disease include age and predisposing conditions such as cancer. The true impact on stem cell transplant and CAR T-cell recipients in unknown. The European Society for Blood and Marrow Transplantation (EBMT) has therefore developed recommendations for transplant programs and physicians caring for these patients. These guidelines were developed by experts from the Infectious Diseases Working Party and have been endorsed by EBMT’s scientific council and board. This work intends to provide guidelines for transplant centers, management of transplant candidates and recipients, and donor issues until the COVID-19 pandemic has passed.
Journal Article
The EBMT activity survey on hematopoietic-cell transplantation and cellular therapy 2018: CAR-T’s come into focus
2020
Hematopoietic-cell transplantation (HCT) is widely used for acquired and congenital disorders of the hematopoietic system. Number of transplants performed in Europe and associated countries continues to rise with 47,468 HCT in 42,901 patients [19,630 allogeneic (41%) and 27,838 autologous (59%)] reported by 701 centers in 50 countries in 2018. Main indications were myeloid malignancies 10,679 (25%; 97% allogeneic), lymphoid malignancies 27,318 (64%; 20% allogeneic), solid tumors 1625 (4%; 2.9% allogeneic), and nonmalignant disorders 3063 (7%; 81% allogeneic). This year’s analysis focuses on cellular therapies with the marked growth in CAR T-cell therapies from 151 in 2017 to 301 patients reported in 2018. Other cellular therapy numbers show less significant changes. Important trends in HCT include a 49% increase in allogeneic HCT for chronic phase CML (although transplant numbers remain low) and a 24% increase in aplastic anemia. In autologous HCT, there is an ongoing increase in autoimmune diseases (by 19%), predominantly due to activity in multiple sclerosis. This annual report reflects current activity and highlights important trends, useful for health care planning.
Journal Article
Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells
2018
Type I interferon (IFN) is a key driver of immunity to infections and cancer. Plasmacytoid dendritic cells (pDCs) are uniquely equipped to produce large quantities of type I IFN but the mechanisms that control this process are poorly understood. Here we report on a droplet-based microfluidic platform to investigate type I IFN production in human pDCs at the single-cell level. We show that type I IFN but not TNFα production is limited to a small subpopulation of individually stimulated pDCs and controlled by stochastic gene regulation. Combining single-cell cytokine analysis with single-cell RNA-seq profiling reveals no evidence for a pre-existing subset of type I IFN-producing pDCs. By modulating the droplet microenvironment, we demonstrate that vigorous pDC population responses are driven by a type I IFN amplification loop. Our study highlights the significance of stochastic gene regulation and suggests strategies to dissect the characteristics of immune responses at the single-cell level.
Plasmacytoid dendritic cells (pDC) are a pivotal component of the immune system. Here, the authors utilize single-cell microfluidics to interrogate the human pDC compartment and reveal a subset of type I IFN secreting pDCs that is regulated by stochastic gene expression and amplified by microenvironmental cues.
Journal Article
Clinical-Grade Generation of Active NK Cells from Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-System Culture Process
by
Preijers, Frank
,
Trilsbeek, Carel
,
Dolstra, Harry
in
Adoptive immunotherapy
,
Antigens, CD34 - immunology
,
Automation
2011
Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials.
Journal Article
Induction of myelodysplasia by myeloid-derived suppressor cells
by
De Witte, Theo
,
Youn, Je-in
,
Gabrilovich, Dmitry I.
in
Adoptive Transfer
,
Animals
,
Biomedical research
2013
Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.
Journal Article
High Log-Scale Expansion of Functional Human Natural Killer Cells from Umbilical Cord Blood CD34-Positive Cells for Adoptive Cancer Immunotherapy
by
Preijers, Frank
,
van der Meer, Arnold
,
Dolstra, Harry
in
Antigens, CD34 - immunology
,
Biotechnology
,
Blood
2010
Immunotherapy based on natural killer (NK) cell infusions is a potential adjuvant treatment for many cancers. Such therapeutic application in humans requires large numbers of functional NK cells that have been selected and expanded using clinical grade protocols. We established an extremely efficient cytokine-based culture system for ex vivo expansion of NK cells from hematopoietic stem and progenitor cells from umbilical cord blood (UCB). Systematic refinement of this two-step system using a novel clinical grade medium resulted in a therapeutically applicable cell culture protocol. CD56(+)CD3(-) NK cell products could be routinely generated from freshly selected CD34(+) UCB cells with a mean expansion of >15,000 fold and a nearly 100% purity. Moreover, our protocol has the capacity to produce more than 3-log NK cell expansion from frozen CD34(+) UCB cells. These ex vivo-generated cell products contain NK cell subsets differentially expressing NKG2A and killer immunoglobulin-like receptors. Furthermore, UCB-derived CD56(+) NK cells generated by our protocol uniformly express high levels of activating NKG2D and natural cytotoxicity receptors. Functional analysis showed that these ex vivo-generated NK cells efficiently target myeloid leukemia and melanoma tumor cell lines, and mediate cytolysis of primary leukemia cells at low NK-target ratios. Our culture system exemplifies a major breakthrough in producing pure NK cell products from limited numbers of CD34(+) cells for cancer immunotherapy.
Journal Article