Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Dolton, Haley R."
Sort by:
Basking shark sub-surface behaviour revealed by animal-towed cameras
While biologging tags have answered a wealth of ecological questions, the drivers and consequences of movement and activity often remain difficult to ascertain, particularly marine vertebrates which are difficult to observe directly. Basking sharks, the second largest shark species in the world, aggregate in the summer in key foraging sites but despite advances in biologging technologies, little is known about their breeding ecology and sub-surface behaviour. Advances in camera technologies holds potential for filling in these knowledge gaps by providing environmental context and validating behaviours recorded with conventional telemetry. Six basking sharks were tagged at their feeding site in the Sea of Hebrides, Scotland, with towed cameras combined with time-depth recorders and satellite telemetry. Cameras recorded a cumulative 123 hours of video data over an average 64-hour deployment and confirmed the position of the sharks within the water column. Feeding events only occurred within a metre depth and made up ¾ of the time spent swimming near the surface. Sharks maintained similar tail beat frequencies regardless of whether feeding, swimming near the surface or the seabed, where they spent surprisingly up to 88% of daylight hours. This study reported the first complete breaching event and the first sub-surface putative courtship display, with nose-to-tail chasing, parallel swimming as well as the first observation of grouping behaviour near the seabed. Social groups of sharks are thought to be very short term and sporadic, and may play a role in finding breeding partners, particularly in solitary sharks which may use aggregations as an opportunity to breed. In situ observation of basking sharks at their seasonal aggregation site through animal borne cameras revealed unprecedented insight into the social and environmental context of basking shark behaviour which were previously limited to surface observations.
Capture heats up sharks
Abstract Catch-and-release fishing is an important component of ecotourism industries and scientific research worldwide, but its total impact on animal physiology, health and survival is understudied for many species of fishes, particularly sharks. We combined biologging and blood chemistry to explore how this fisheries interaction influenced the physiology of two widely distributed, highly migratory shark species: the blue shark (Prionace glauca) and the tiger shark (Galeocerdo cuvier). Nineteen sharks were caught by drum line or rod-and-reel angling; subcutaneous body temperature measurements were taken immediately upon capture, with six individuals also providing subsequent subcutaneous body temperature measurements via biologging as they swam freely for several hours post-release. We found that short-term capture caused shark body temperature to increase significantly and rapidly, with increases of 0.6°C–2.7°C for blue sharks (mean, 1.2 ± 0.6°C) and 0.5°C–0.9°C for tiger sharks (mean, 0.7 ± 0.2°C) and with capture-induced heating rates of blue sharks averaging 0.3°C min−1 but as high as 0.8°C min−1. Blue shark body temperature was even higher deeper into the white muscle. These heating rates were three to eight times faster than maximum rates encountered by our biologging sharks swimming through thermally stratified waters and faster than most acute heating experiments conducted with ectotherms in laboratory experiments. Biologging data showed that body temperatures underwent gradual decline after release, returning to match water temperatures 10–40 mins post-release. Blood biochemistry showed variable lactate/glucose levels following capture; however, these concentrations were not correlated with the magnitude of body temperature increase, nor with body size or hooking time. These perturbations of the natural state could have immediate and longer-term effects on the welfare and ecology of sharks caught in catch-and-release fisheries and we encourage further study of the broader implications of this reported phenomenon.
Short-term behavioural responses of Atlantic bluefin tuna to catch-and-release fishing
Catch-and-release fishing is seen as sustainable compared with overharvesting of fish, especially for commercially important species such as Atlantic bluefin tuna (ABFT). However, effects of this fishing on their behaviour and physiology are not fully understood. Here we show ABFTs are responding at two behavioural scales: immediately and hours post-release, with differing behavioural responses based on different capture and handling methods. Abstract Catch-and-release (C&R) angling is often touted as a sustainable form of ecotourism, yet the fine-scale behaviour and physiological responses of released fish is often unknown, especially for hard-to-study large pelagic species like Atlantic bluefin tuna (ABFT; Thunnus thunnus). Multi-channel sensors were deployed and recovered from 10 ABFTs in a simulated recreational C&R event off the west coast of Ireland. Data were recorded from 6 to 25 hours, with one ABFT (tuna X) potentially suffering mortality minutes after release. Almost all ABFTs (n = 9, including tuna X) immediately and rapidly (vertical speeds of ~2.0 m s−1) made powered descents and used 50–60% of the available water column within 20 seconds, before commencing near-horizontal swimming ~60 seconds post-release. Dominant tailbeat frequency was ~50% higher in the initial hours post-release and appeared to stabilize at 0.8–1.0 Hz some 5–10 hours post-release. Results also suggest different short-term behavioural responses to noteworthy variations in capture and handling procedures (injury and reduced air exposure events). Our results highlight both the immediate and longer-term effects of C&R on ABFTs and that small variations in C&R protocols can influence physiological and behavioural responses of species like the commercially valuable and historically over-exploited ABFT.
Assessing the potential of acoustic telemetry to underpin the regional management of basking sharks (Cetorhinus maximus)
Acoustic telemetry can provide valuable space-use data for a range of marine species. Yet the deployment of species-specific arrays over vast areas to gather data on highly migratory vertebrates poses formidable challenges, often rendering it impractical. To address this issue, we pioneered the use of acoustic telemetry on basking sharks ( Cetorhinus maximus ) to test the feasibility of using broadscale, multi-project acoustic receiver arrays to track the movements of this species of high conservation concern through the coastal waters of Ireland, Northern Ireland, and Scotland. Throughout 2021 and 2022, we tagged 35 basking sharks with acoustic transmitters off the west coast of Ireland; 27 of these were detected by 96 receiver stations throughout the study area ( n  = 9 arrays) with up to 216 detections of an individual shark (mean = 84, s.d. 65). On average, sharks spent ~ 1 day at each acoustic array, with discrete residency periods of up to nine days. Twenty-one sharks were detected at multiple arrays with evidence of inter-annual site fidelity, with the same individuals returning to the same locations in Ireland and Scotland over 2 years. Eight pairs of sharks were detected within 24 h of each other at consecutive arrays, suggesting some level of social coordination and synchronised movement. These findings demonstrate how multi-project acoustic telemetry can support international, cost-effective monitoring of basking sharks and other highly mobile species. Decision support tools such as these can consolidate cross-border management strategies, but to achieve this goal, collaborative efforts across jurisdictions are necessary to establish the required infrastructure and secure ongoing support.